scholarly journals Glucan phosphate inhibits HMGB-1 release from rat myocardial H9C2 cells in sepsis via TLR4/NF-кB signal pathway

2017 ◽  
Vol 40 (2) ◽  
pp. 66 ◽  
Author(s):  
Haizhu Wang ◽  
Zhifei Cui ◽  
Fei Sun ◽  
Huayong Ding

Purpose: The effect of glucan phosphate (GP) on the release of HMGB-1 from rat myocardial cells (H9C2) during lipopolysaccharide-induced sepsis, and the underlying mechanisms, were investigated. Methods: H9C2 cells were divided into three groups: normal; lipopolysaccharide (LPS) (1 mg/ml LPS); and, LPS+GP (2 mg/ml GP). Western blot was used to determine toll-like receptor 4 (TLR4) levels, and electrophoretic mobility-shift assays (EMSA) was used to determine nuclear factor-кB (NF-кB) activity 3, 6 and 9 h after treatment. HMGB-1 mRNA levels in cultured cells were determined by real-time PCR and supernatant HMGB-1 protein levels were evaluated by ELISA at 12, 24, 36 and 48 h after treatment. Following the transfection of H9C2 cells with Ad5-IкBα, which inhibits NF-кB activity, TLR4, NF-кB and HMGB-1 levels were determined. Results: Intracellular TLR4 levels and NF-кB activity in LPS and LPS+GP groups increased 3-9 h after stimulation, but the increased levels of TLR4 and elevated activity of NF-кB were significantly lower in the LPS+GP group vs. the LPS group. HMGB-1 mRNA levels in both LPS and LPS+GP groups, increased gradually from 24 h after stimulation, but the increase was more obvious in the LPS group vs. the LPS+GP group. Supernatant HMGB-1 levels in the LPS and LPS+GP groups increased gradually from 9 h after stimulation, and also increased markedly in the LPS group. After the inhibition of NF-кB activity, LPS-induced HMGB-1 release decreased significantly (p

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Hwi Jin Ko ◽  
Dae Young Jung ◽  
Zhexi Ma ◽  
Jason K Kim

Increasing evidence implicates the role of inflammation in diabetes and complications. Macrophages are shown to infiltrate adipose tissue in obesity, and inflammatory cytokines alter glucose metabolism in peripheral organs. Male C57BL/6 mice were fed high-fat diet (HFD; 55% fat by calories) or chow diet for 6 weeks, and heart samples were taken for analysis (n = 5~7). Chronic HFD increased whole body fat mass, measured by 1 H-MRS, by 3-fold, and elevated plasma IL-6 and TNF-α levels by 40%. Diet-induced obesity caused inflammation in heart and increased macrophage-specific CD68 levels by 5-fold (Fig. 1) (* P < 0.05 vs Chow). Diet-induced cardiac inflammation was associated with significant increases in toll-like receptor 4 (TLR4) and MyD88 levels in heart (Fig. 2). HFD also increased cardiomyocyte SOCS3 levels by more than 3-fold (Fig. 3). Myocardial glucose metabolism was measured using intravenous injection of 2-[ 14 C]deoxyglucose in awake mice (n = 6). Chronic HFD reduced myocardial glucose uptake by 50%, and this was associated with significant reductions in total GLUT4 and GLUT1 protein levels. Further, Thr 172 phosphorylation of AMPK, a critical regulator of energy balance, was markedly reduced in heart following HFD (Fig. 4). These results demonstrate that diet-induced obesity causes macrophage infiltration and inflammation in heart by increasing TLR4 signaling in cardiomyocytes. Similar to the effects of inflammation on peripheral glucose metabolism, diet-induced cardiac inflammation reduced myocardial glucose metabolism by downregulating AMPK and GLUT protein levels. Thus, our findings underscore an important role of inflammation in diabetic heart.


2018 ◽  
Vol 314 (1) ◽  
pp. G14-G21 ◽  
Author(s):  
Saminathan Muthusamy ◽  
Jong Jin Jeong ◽  
Ming Cheng ◽  
Jessica A. Bonzo ◽  
Anoop Kumar ◽  
...  

Na+/H+ exchanger isoform 3 (NHE3) plays a key role in coupled electroneutral NaCl absorption in the mammalian intestine. Reduced NHE3 expression or function has been implicated in the pathogenesis of diarrhea associated with inflammatory bowel disease (IBD) or enteric infections. Our previous studies revealed transcriptional regulation of NHE3 by various agents such as TNF-α, IFN-γ, and butyrate involving transcription factors Sp1 and Sp3. In silico analysis revealed that the NHE3 core promoter also contains a hepatocyte nuclear factor 4α (HNF-4α) binding site that is evolutionarily conserved in several species suggesting that HNF-4α has a role in NHE3 regulation. Nhe3 mRNA levels were reduced in intestine-specific Hnf4α-null mice. However, detailed mechanisms of NHE3 regulation by HNF-4α are not known. We investigated the regulation of NHE3 gene expression by HNF-4α in vitro in the human intestinal epithelial cell line C2BBe1 and in vivo in intestine-specific Hnf4α-null ( Hnf4αΔIEpC) and control ( Hnf4αfl/fl) mice. HNF-4α knockdown by short interfering RNA in C2BBe1 cells significantly decreased NHE3 mRNA and NHE3 protein levels. Gel mobility shift and chromatin immunoprecipitation assays revealed that HNF-4α directly interacts with the HNF-4α motif in the NHE3 core promoter. Site-specific mutagenesis on the HNF-4α motif decreased, whereas ectopic overexpression of HNF-4α increased, NHE3 promoter activity. Furthermore, loss of HNF-4α in Hnf4αΔIEpC mice decreased colonic Nhe3 mRNA and NHE3 protein levels. Our results demonstrate a novel role for HNF-4α in basal regulation of NHE3 expression. These studies represent an important and novel target for therapeutic intervention in IBD-associated diarrhea. NEW & NOTEWORTHY Our studies for the first time show that hepatocyte nuclear factor 4α directly regulates NHE3 promoter activity and its basal expression in the intestine.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1667
Author(s):  
Jian-Hong Lin ◽  
Kun-Ta Yang ◽  
Pei-Ching Ting ◽  
Yu-Po Luo ◽  
Ding-Jyun Lin ◽  
...  

Myocardial ischemia/reperfusion (I/R) injury has been associated with ferroptosis, which is characterized by an iron-dependent accumulation of lipid peroxide to lethal levels. Gossypol acetic acid (GAA), a natural product taken from the seeds of cotton plants, prevents oxidative stress. However, the effects of GAA on myocardial I/R-induced ferroptosis remain unclear. This study investigated the ability of GAA to attenuate I/R-induced ferroptosis in cardiomyocytes along with the underlying mechanisms in a well-established rat model of myocardial I/R and isolated neonatal rat cardiomyocytes. H9c2 cells and cardiomyocytes were treated with the ferroptosis inducers erastin, RSL3, and Fe-SP. GAA could protect H9c2 cells against ferroptotic cell death caused by these ferroptosis inducers by decreasing the production of malondialdehyde and reactive oxygen species, chelating iron content, and downregulating mRNA levels of Ptgs2. GAA could prevent oxygen-glucose deprivation/reperfusion-induced cell death and lipid peroxidation in the cardiomyocytes. Moreover, GAA significantly attenuated myocardial infarct size, reduced lipid peroxidation, decreased the mRNA levels of the ferroptosis markers Ptgs2 and Acsl4, decreased the protein levels of ACSL4 and NRF2, and increased the protein levels of GPX4 in I/R-induced ex vivo rat hearts. Thus, GAA may play a cytoprotectant role in ferroptosis-induced cardiomyocyte death and myocardial I/R-induced ferroptotic cell death.


2015 ◽  
Vol 93 (4) ◽  
pp. 253-260 ◽  
Author(s):  
Yu Zhang ◽  
Ruhong Yan ◽  
Yae Hu

Oxymatrine (OMT) is the quinolizidine alkaloid extracted from the Chinese herb Sophora flavescens Ait. that has many pharmacological effects and is used for the treatment of some inflammatory diseases. In this study, RAW264.7 cells and THP-1 differentiated macrophages were pretreated with various concentrations of OMT at 2 h prior to treatment with lipopolysaccharide (LPS) (1.0 μg/mL) for different durations. We detected the anti-inflammatory effect of OMT in LPS-stimulated macrophages and investigated the molecular mechanism. We showed that OMT pretreatment significantly inhibited the LPS-induced secretion of nitric oxide (NO), interleukin-1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α) in supernatant, attenuated the mRNA levels of inducible nitric oxide synthase (iNOS), IL-1β, TNF-α, and Toll-like receptor 4 (TLR4), increased TLR4 and phosphorylation of inhibitor of kappa B-alpha (p-IBα) in cytosol, and decreased the nuclear level of nuclear factor-κB (NF-κB) p65 in macrophages. In conclusion, OMT exerts anti-inflammatory properties in LPS-stimulated macrophages by down-regulating the TLR4/NF-κB pathway.


Development ◽  
1999 ◽  
Vol 126 (14) ◽  
pp. 3263-3274 ◽  
Author(s):  
G.M. Souza ◽  
A.M. da Silva ◽  
A. Kuspa

When nutrients are depleted, Dictyostelium cells undergo cell cycle arrest and initiate a developmental program that ensures survival. The YakA protein kinase governs this transition by regulating the cell cycle, repressing growth-phase genes and inducing developmental genes. YakA mutants have a shortened cell cycle and do not initiate development. A suppressor of yakA that reverses most of the developmental defects of yakA- cells, but none of their growth defects was identified. The inactivated gene, pufA, encodes a member of the Puf protein family of translational regulators. Upon starvation, pufA- cells develop precociously and overexpress developmentally important proteins, including the catalytic subunit of cAMP-dependent protein kinase, PKA-C. Gel mobility-shift assays using a 200-base segment of PKA-C's mRNA as a probe reveals a complex with wild-type cell extracts, but not with pufA- cell extracts, suggesting the presence of a potential PufA recognition element in the PKA-C mRNA. PKA-C protein levels are low at the times of development when this complex is detectable, whereas when the complex is undetectable PKA-C levels are high. There is also an inverse relationship between PufA and PKA-C protein levels at all times of development in every mutant tested. Furthermore, expression of the putative PufA recognition elements in wild-type cells causes precocious aggregation and PKA-C overexpression, phenocopying a pufA mutation. Finally, YakA function is required for the decline of PufA protein and mRNA levels in the first 4 hours of development. We propose that PufA is a translational regulator that directly controls PKA-C synthesis and that YakA regulates the initiation of development by inhibiting the expression of PufA. Our work also suggests that Puf protein translational regulation evolved prior to the radiation of metazoan species.


Blood ◽  
2002 ◽  
Vol 99 (9) ◽  
pp. 3427-3431 ◽  
Author(s):  
Daniela Bosisio ◽  
Nadia Polentarutti ◽  
Marina Sironi ◽  
Sergio Bernasconi ◽  
Kensuke Miyake ◽  
...  

Abstract In human monocytes and macrophages, interferon-γ (IFNγ) augmented mRNA and surface expression of toll-like receptor 4 (TLR4), a crucial component of the signaling receptor complex for bacterial lipopolysaccharide (LPS). Expression of the accessory component MD-2 and of the adapter protein MyD88 was also increased. LPS increased TLR4 mRNA levels, but concomitantly decreased its surface expression. IFNγ counteracted the LPS-induced downregulation of TLR4. IFNγ-primed monocytes showed increased responsiveness to LPS in terms of phosphorylation of the interleukin-1 receptor–associated kinase (IRAK; immediately downstream of the MyD88 adapter protein), NF-kB DNA binding activity, and, accordingly, of cytokine (tumor necrosis factor α [TNFα] and interleukin-12 [IL-12]) production. These results suggest that enhanced TLR4 expression underlies the long-known priming by IFNγ of mononuclear phagocytes for pathogen recognition and killing as well as its synergism with LPS in macrophage activation.


2008 ◽  
Vol 190 (22) ◽  
pp. 7441-7452 ◽  
Author(s):  
Francisca A. Cerda-Maira ◽  
Carol S. Ringelberg ◽  
Ronald K. Taylor

ABSTRACT Enteric pathogens have developed several resistance mechanisms to survive the antimicrobial action of bile. We investigated the transcriptional profile of Vibrio cholerae O1 El Tor strain C6706 under virulence gene-inducing conditions in the presence and absence of bile. Microarray analysis revealed that the expression of 119 genes was affected by bile. The mRNA levels of genes encoding proteins involved in transport were increased in the presence of bile, whereas the mRNA levels of genes encoding proteins involved in pathogenesis and chemotaxis were decreased. This study identified genes encoding transcriptional regulators from the TetR family (vexR and breR) and multidrug efflux pumps from the resistance-nodulation-cell division superfamily (vexB and vexD [herein renamed breB]) that were induced in response to bile. Further analysis regarding vexAB and breAB expression in the presence of various antimicrobial compounds established that vexAB was induced in the presence of bile, sodium dodecyl sulfate, or novobiocin and that the induction of breAB was specific to bile. BreR is a direct repressor of the breAB promoter and is able to regulate its own expression, as demonstrated by transcriptional and electrophoretic mobility shift assays (EMSA). The expression of breR and breAB is induced in the presence of the bile salts cholate, deoxycholate, and chenodeoxycholate, and EMSA showed that deoxycholate is able to abolish the formation of BreR-P breR complexes. We propose that deoxycholate is able to interact with BreR and induce a conformational change that interferes with the DNA binding ability of BreR, resulting in breAB and breR expression. These results provide new insight into a transcriptional regulator and a transport system that likely play essential roles in the ability of V. cholerae to resist the action of bile in the host.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Patipark Kueanjinda ◽  
Sittiruk Roytrakul ◽  
Tanapat Palaga

Abstract Activation of macrophages triggers the release of pro-inflammatory cytokines leading to inflammation. Numb is a negative regulator of Notch signaling, but the role of Numb in macrophages is not fully understood. In this study, the role of Numb as a regulator of inflammatory responses in macrophages was investigated. Murine bone marrow-derived macrophages, in which expression of Numb was silenced, secreted significantly less TNFα, IL-6 and IL-12 and more IL-10 upon activation by lipopolysaccharide (LPS), a ligand for Toll-like receptor 4 (TLR4), despite increased Notch signaling. The Tnfα mRNA levels both in Numb-deficient and wild-type macrophages were not significantly different, unlike those of Il6 and Il12-p40. In Numb-deficient macrophages, the Tnfα mRNAs were degraded at faster rate, compared to those in control macrophages. Activation of p38 MAPK and NF-κΒ p65 were compromised in activated Numb deficient macrophages. Numb was found to interact with the E3 ubiquitin ligase, Itch, which reportedly regulates p38 MAPK. In addition, blocking the Notch signaling pathway in activated, Numb-deficient macrophages did not further reduce TNFα levels, suggesting a Notch-independent role for Numb. A proteomics approach revealed a novel funciton for Numb in regulating complex signaling cascades downstream of TLRs, partially involving Akt/NF-κB p65/p38 MAPK in macrophages.


1997 ◽  
Vol 19 (2) ◽  
pp. 137-147 ◽  
Author(s):  
SG Ball ◽  
J Sokolov ◽  
WW Chin

Recent data have suggested that the iodothyronine, 3,5-diiodo-l-thyronine (T2), has selective thyromimetic activity. In vivo, T2 has been shown to suppress TSH levels at doses that do not produce significant peripheral manifestations of thyroid hormone activity. Furthermore, T2 has been shown to produce smaller increments in peripheral indices of thyroid status than does T3, when doses resulting in equivalent suppression of circulating TSH are compared. We have assessed the selective thyromimetic activity of T2 in vivo and in vitro, and performed in vitro studies to assess the potential molecular basis for these selective properties. T2 was 100-fold less potent than T3 in stimulating GH mRNA levels in GH3 cells. In contrast, the iodothyronines were almost equivalent in their ability to downregulate TRbeta2 mRNA levels in this cell line. Both 3,3'-diiodo-L-thyronine and thyronine exhibited no significant thyromimetic effects on either process. In vivo, doses of T2 and T3 that were equivalent in their induction of hepatic malic enzyme (ME) mRNA did not produce equivalent suppression of circulating TSH, with T2 being only 27% as effective as T3. T2 was up to 500-fold less potent than T3 in displacing [125I]-T3 from in vitro translated specific nuclear receptors (TRs) and GH3 cell nuclear extracts. Electrophoretic mobility shift assays, assessing the ability of T2 to produce dissociation of TRbeta1 homodimers from inverted palindrome T3 response elements, indicated that T2 was also 1000-fold less potent than T3 in this respect. These data confirm that T2 has significant thyromimetic activity, and that this activity is selective both in vivo and in vitro. However, there are no data to support a selective central effect, T2 being relatively more potent in stimulating hepatic ME mRNA than in suppression of TSH in vivo. The basis for this differential thyromimetic activity is not selective affinity of the different TR isoforms for T2, or divergent properties of T2 in competitive binding and functional assays in vitro.


Sign in / Sign up

Export Citation Format

Share Document