scholarly journals Effects of Dam Gate Geometry on Pressure Variation Aided by Map Presentation

2020 ◽  
Vol 10 (2) ◽  
pp. 44-52
Author(s):  
Sheeraz M. Ameen ◽  
Thamir M. Ahmed

The dam vertical lift gate is one of the most important operational parts that regulate the high head water flow to power plants as well as satisfying the water needs for projects and areas downstream of the dam. Due to the high water levels in the dam reservoir, the gates are subjected to many hydrostatic and dynamic pressures that affect their performance and stability. Hence, it became necessary to study all parameters that may cause excessive pressures which may lead to reduce the gate performance efficiency or even cause failure. In the current study, the pressure distribution along the bottom surface of various gate lip shapes has been measured and presented as contour maps using Surfer software. The pressure fluctuation was observed to indicate the intensity of flow separation and reattachment which, in turn, causes a vibration that may threaten the stability of the gate or impede its proper functioning. The pressures in this study are expressed as a dimensional coefficient through the integration of pressure measurements at 8 points distributed over the bottom gate surface. The high intensity of pressure attachment indicates the critical condition for hydraulic design.

1978 ◽  
Vol 1 (16) ◽  
pp. 58
Author(s):  
P.F. Hamblin

Storm surges in enclosed seas although generally not as large in amplitude as their oceanic counterparts are nonetheless of considerable importance when low lying shoreline profiles, shallow water depth, and favourable geographical orientation to storm winds occur together. High water may result in shoreline innundation and in enhanced shoreline erosion. Conversely low water levels are hazardous to navigation. The purpose of this paper is to discuss the problem of storm surge forecasting in enclosed basins with emphasis on automated operational procedures. In general, operational forecasting methods must be based on standard forecast parameters, require a minimum of computational effort in the preparation of the forecast, must be applicable to lakes of different geometry and to any point on the shore, and to be able to resolve water level changes on an hourly basis to 10 cm in the case of high water level excursions associated with large lakes and less than that for smaller lakes. Particular physical effects arising in lakes which make these constraints difficult to fulfill are the reflections of resurgences of water levels arising from lateral boundaries, the stability of the atmospheric boundary layer and the presence of such subsynoptic disturbances as squall lines and travelling pressure jumps.


1988 ◽  
Vol 1 (21) ◽  
pp. 211
Author(s):  
K.J. MacIntosh ◽  
C.D. Anglin

High water levels on Lake Michigan during 1985 and 1986 created substantial erosion of the shoreline and reduced the size and recreational potential of many of the parks and beaches. To prevent further erosion, protect existing properties and structures, and to create and improve recreational areas along the Lake Michigan shoreline, four coastal engineering projects were designed and constructed during this time. Artificial beach units stabilized by offshore breakwaters were used as the main component of each project. Physical hydraulic model studies were used to determine the orientation, size, and spacing of breakwaters and artificial beach units. Model predictions of beach profiles and plan shapes compare closely with prototype surveys. Surveys completed since construction demonstrate the stability of the beaches and support their use as effective, low maintenance shoreline protection. Prototype experience has shown that these projects are extremely successful both in their ability to withstand storms on the Great Lakes and to attract people for recreational activities.


2022 ◽  
Vol 1212 (1) ◽  
pp. 012039
Author(s):  
Setiyawan ◽  
A Rusdin ◽  
T Amaliah ◽  
Olphino

Abstract As time evolved, the demand for electrical energy also increased. As a result, renewable energy is needed to replace fossil fuels as fuel for electricity generation. Tidal water is one of the renewable alternative energy sources used as fuel for electricity generation. The tides will never run out and can also be predicted. One method that can predict data about waves is the Spectrum Method. Tide prediction data can be indicated by carrying out tidal height observations for 15 days at Tibo Beach, Donggala Regency, Central Sulawesi. Based on observations, the data obtained are the highest high water level (HHWL) is 2.4 meters, and the lowest low water level (LLWL) is 0.1 meters. Also, the type of tides on the Tibo coast is a type of mixed waves that tend to double daily, there are two tides with high water and two tides with low water with different water levels. Because the value of formzahl is 0.312. With a 2.4 meter high HHWL and a sea area of 35.4 km2, the electricity generated is 13.08 MW.


2007 ◽  
Vol 158 (1-2) ◽  
pp. 14-21
Author(s):  
Vasyl Sabadosh ◽  
Oleg Suprunenko

The upper Theresian Valley lies along the southwest-facing ridge of the Ukrainian Carpathians. Despite expansive forestation high water levels are frequent. The forest belongs to the state and is centrally administrated. Felling is sometimes outsourced to private companies and private companies have also been founded to process the timber. Job opportunities have become fewer and illegal work is increasing. A new democratic awareness has emerged since the «Orange Revolution» in 2004. With foreign investors, however, new risks emerge. The authors recommend giving monies from forest management to the communities, the founding of new wood processing enterprises and more transparent information.


The Holocene ◽  
2020 ◽  
pp. 095968362098168
Author(s):  
Christian Stolz ◽  
Magdalena Suchora ◽  
Irena A Pidek ◽  
Alexander Fülling

The specific aim of the study was to investigate how four adjacent geomorphological systems – a lake, a dune field, a small alluvial fan and a slope system – responded to the same impacts. Lake Tresssee is a shallow lake in the North of Germany (Schleswig-Holstein). During the Holocene, the lake’s water surface declined drastically, predominately as a consequence of human impact. The adjacent inland dune field shows several traces of former sand drift events. Using 30 new radiocarbon ages and the results of 16 OSL samples, this study aims to create a new timeline tracing the interaction between lake and dunes, as well, as how both the lake and the dunes reacted to environmental changes. The water level of the lake is presumed to have peaked during the period before the Younger Dryas (YD; start at 10.73 ka BC). After the Boreal period (OSL age 8050 ± 690 BC) the level must have undergone fluctuations triggered by climatic events and the first human influences. The last demonstrable high water level was during the Late Bronze Age (1003–844 cal. BC). The first to the 9th century AD saw slightly shrinking water levels, and more significant ones thereafter. In the 19th century, the lake area was artificially reduced to a minimum by the human population. In the dunes, a total of seven different phases of sand drift were demonstrated for the last 13,000 years. It is one of the most precisely dated inland-dune chronologies of Central Europe. The small alluvial fan took shape mainly between the 13th and 17th centuries AD. After 1700 cal. BC (Middle Bronze Age), and again during the sixth and seventh centuries AD, we find enhanced slope activity with the formation of Holocene colluvia.


1975 ◽  
Vol 2 (4) ◽  
pp. 381-391 ◽  
Author(s):  
J. W. Kamphuis

A number of lightweight coastal protection structures, built on the Lake Erie shore are discussed in this paper. There were two constraints on the design; limited funds and a very precarious downdrift beach. Thus the structures were inexpensive and the protection was low-key to prevent damage downdrift. In 1972–1974 these structures were subjected to a combination of large waves and high water levels and thus they were tested well beyond their design limits.The paper discusses the structures, their performance under normal conditions, and their performance during and after the abnormally high water levels. It is found that inexpensive, low-key structures are sufficiently strong to survive normal conditions, but fail by overtopping and flanking under conditions beyond their low design limits.


Kerntechnik ◽  
2021 ◽  
Vol 86 (3) ◽  
pp. 236-243
Author(s):  
G. R. Sunaryo ◽  
R. Kusumastuti ◽  
Sriyono

Abstract The objective of this research is to understand the condition of the structural material of the 30 MW RSG-GAS research reactor as input for the aging management program. Furthermore, this should enable a prediction of the remaining life of the components. In the current experiment, corrosion surveillance was carried out at Interim Storage for Spent Fuel (ISSF), that has similar water quality as in reactor pool by using a corrosion probe which is made of aluminum alloy and stainless steel. The probe set is designed to understand the effect of water quality in the ISSF pond. The corrosion processes observed were pitting, crevice and galvanic corrosion. Two sets of corrosion probes were immersed into the ISSF pool in 2007, hanging by steel wire, 1-meter height from the bottom surface. One probe set consists of horizontal and vertical positions. The soaking time was 7 years. The observations made were water chemical content, corrosion rate and visual analysis, macro and micro. For macro visual observations an optical microscope was used, for micro-observations SEM-EDX. From the results of macro-observations, information on the presence of galvanic corrosion, crevice and pitting was obtained. SEM-EDX provides information on the influence of chloride ions on corrosion products. This experience will be very useful in dealing with the aging process of Indonesia’s nuclear power plants in the future.


2017 ◽  
Vol 23 (1) ◽  
pp. 15-27
Author(s):  
Chung-Won LEE ◽  
Yong-Seong KIM ◽  
Sung-Yong PARK ◽  
Dong-Gyun KIM ◽  
Gunn HEO

Centrifugal model testing has been widely used to study the stability of levees. However, there have been a limited number of physical studies on levees where the velocity of increasing water levels was considered. To investigate the behavior characteristics of reservoir levees with different velocities of increasing water levels, centrifugal model tests and seepage-deformation coupled analyses were conducted. Through this study, it was confirmed that increasing water levels at higher velocities induces dramatic increases in the displacement, plastic volumetric strain and risk of hydraulic fracturing occurring in the core of the levee. Hence, real-time monitoring of the displacement and the pore water pres­sure of a levee is important to ensure levee stability.


Author(s):  
A.-L. Montreuil ◽  
M. Chen ◽  
A. Esquerré ◽  
R. Houthuys ◽  
R. Moelans ◽  
...  

<p><strong>Abstract.</strong> Sustainable management of the coastal resources requires a better understanding of the processes that drive coastline change. The coastline is a highly dynamic sea-terrestrial interface. It is affected by forcing factors such as water levels, waves, winds, and the highest and most severe changes occur during storm surges. Extreme storms are drivers responsible for rapid and sometimes dramatic changes of the coastline. The consequences of the impacts from these events entail a broad range of social, economic and natural resource considerations from threats to humans, infrastructure and habitats. This study investigates the impact of a severe storm on coastline response on a sandy multi-barred beach at the Belgian coast. Airborne LiDAR surveys acquired pre- and post-storm covering an area larger than 1 km<sup>2</sup> were analyzed and reproducible monitoring solutions adapted to assess beach morphological changes were applied. Results indicated that the coast retreated by a maximum of 14.7 m where the embryo dunes in front of the fixed dunes were vanished and the foredune undercut. Storm surge and wave attacks were probably the most energetic there. However, the response of the coastline proxies associated with the mean high water line (MHW) and dunetoe (DuneT) was spatially variable. Based on the extracted beach features, good correlations (r>0.73) were found between coastline, berm and inner intertidal bar morphology, while it was weak with the most seaward bars covered in the surveys. This highlights the role of the upper features on the beach to protect the coastline from storm erosion by reducing wave energy. The findings are of critical importance in improving our knowledge and forecasting of coastline response to storms, and also in its translation into management practices.</p>


2020 ◽  
Vol 9 (10) ◽  
pp. e4479108555
Author(s):  
Josué Ribeiro da Silva Nunes ◽  
Carolina Joana da Silva ◽  
Solange Kimie Ikeda-Castrillon ◽  
Nilo Leal Sander

The Pantanal wetland Mato Grosso, Brazil is among the largest floodplains in the world, with a mosaic of different habitats and rich aquatic and terrestrial biota. The habitat mosaics are found in the Chacororé and Sinhá Mariana lake System. These parental lakes of the Cuiabá River, a left tributary of the Upper Paraguay River, are known for their aquatic productivity and scenic beauty. The characteristics of these lakes and their floodplains are showed through the difference between their waters, the diversity of the aquatic macrophytes communities, fish communities and aquatic birds. Our study looked at changes in limnological variables as well as diversity of aquatic birds, during high water or flooded phase; medium water or receding phase; and the low water or dry phase. We used a temporary small lagoon in the floodplain of this system as our study area. The flood pulse is the main ecological factor affecting the Pantanal; it modifies ecological process and species composition. The water depth decreases during the season, decreasing electrical conductivity, dissolved phosphate and nitrate, water transparency, dissolved oxygen and biomass of aquatic macrophyte; and increasing calcium, total phosphorus and total nitrogen. We also observed increase in species richness and abundance of aquatic birds during the receding phase. Results show that the number of species (density) of aquatic birds increased from 10 to 30 species and the numbers of individuals from 40 to 936. The maximum richness and abundance of aquatic birds was registered during the receding phase.


Sign in / Sign up

Export Citation Format

Share Document