scholarly journals Proposal for a new monolithic constructive system using mycocomposite nucleus

2021 ◽  
Author(s):  
Vivyan Pinheiro Simão Ribeiro ◽  
Maria das Graças Machado Freire ◽  
Glória Andreia Ferreira Hernández ◽  
Michel Picanço Oliveira ◽  
Bárbara Ferreira de Oliveira

“Green” materials and productive processes have progressively been searched for. In the last years, it has increased the number of researches regarding mycocomposites characterization and, above all, their applicability. Biofabrication is a process that is carried out by incubating the substrate composed of organic residues with fungal mycelium. During incubation, the fungus gradually develops on the substrate, penetrating the microscopic channels of the different residues, and acting both as a reinforcing fiber and as a binding material. This Project was designed to seek the most suitable combination between substrate components and the fungus Ganoderma sp.aiming to obtain a mycocomposite which could be used as a nucleus of an alternative monolithic constructive system. In this project, composites using the fungus Ganoderna sp. and five different types of waste (white wood sawdust, cornstarch, bark and coffee grounds, and piassava fiber) were investigated. The morphology of these components, as well as mycelium and substrate interaction, was studied by scanning electron microscopy technique. The mechanical properties were determined through bending and compression tests, being correlated with the Fourier transform infrared spectroscopy analysis. The fabrication of a mycocomposite panel was proposed as an application; it could be included as the core of the prototype of a building system of walls, structured with steel and mortar. Thus, this project aimed to contribute to the ecosystem’s quality, once the raw material used was composed of organic waste that would be reinserted in a production process instead of being discarded in nature. Besides, the project suggests the production of a new biologically-based material for civil construction.

2021 ◽  
Vol 10 (1) ◽  
pp. 555-568
Author(s):  
Ghalia A. Gaber ◽  
Mohamed Mohamady Ghobashy ◽  
Mohamed Madani ◽  
Dalal Mohamed Alshangiti ◽  
Sheikha A. Alkhursani ◽  
...  

Abstract Since the corrosion protection of mild steel samples in corrosive media (1 M of hydrochloric acid [HCl]) was cheap and successful, the ethanol extract of Posidonia oceanica leaves based on polyvinylpyrrolidone (P. oceanica/PVP) was analyzed using the weight reduction, the open circuit potential, and the potentiodynamic polarization methods. The obtained results explained that the productivity of hindrance increments had the greatest restraint efficiency of ∼81% at 1,000 ppm, as the concentration of the extract increased. Liable for adsorption as a thin layer on the surface of mild steel to protect it, the creation of kaolin-traced phenolic and polysaccharide compounds was confirmed by the Fourier transform infrared spectroscopy analysis. A scanning electron microscope was used to evaluate the inhibitive action of P. oceanica/PVP against steel in corrosive media and the change in surface morphology was considered. It is presumed that the ethanol removed from the Posidonia oceanica leaves can fill in as a compelling consumption inhibitor for gentle steel in HCL solution (1 M).


2021 ◽  
pp. 096739112110093
Author(s):  
Edgar Vázquez-Núñez ◽  
Andrea M Avecilla-Ramírez ◽  
Berenice Vergara-Porras ◽  
María del Rocío López-Cuellar

The current world environment scenario demands new and more eco-friendly solutions to global problems that cover the demands for materials. This sector has included green polymer-based composites and natural reinforcers from origins of renewable sources, these Green Composites (GC), natural-fiber-reinforced bio-composites in which the matrix is a bio-based polymer, have shown attractive characteristics. Biodegradability is one of the most important attributes for these new “green” materials, in that this characteristic allows for their introduction into the world market as an environmental solution. The manufacturing processes for obtaining these materials have observed important improvements because each raw material exhibits different properties and characteristics and their eco-friendly character has facilitated its incorporation into diverse sectors, such as construction, automotive, packaging, and medicine, among others. At present, this segment represents an important income for some economies, especially those where these resources are available, enhancing the creation of green economies, strengthening the world’s efforts toward sustainability.


2017 ◽  
Author(s):  
◽  
Jihyun Park

Annually, more than 6 million tons of spent coffee grounds (SCG) are generated worldwide. The present study explores the possible use of spent coffee grounds as the raw materials for cosmetics industry. The main objective of this project are to investigate the chemical profiles and identify the bioactive compounds for cosmetics application through global metabolite analysis. The compounds extracted from SCG of Ethiopia coffee (Yirgacheffe), Costa Rican coffee (Tarrazu) and Hawaiian coffee (Kona) were analyzed by ultra-high pressure liquid chromatography coupled with mass spectrometry (UPLC-MS). The ion chromatograms were submitted to XCMS platform operated by Center for Metabolomics at the Scripps Research Institute. The peak detection, peak grouping, spectra extraction, and retention alignment were processed by XCMS. The spectra were annotated and the compounds were identified and categorized by integration with METLIN, the world's largest metabolite database. Multivariate and univariate statistical analysis including PCA and cloud-plot were performed by XCMS to compare the chemical profiles between the three coffee cultivars. These analyses indicated that each cultivar showed a specific cluster. Over 200 compounds related to anti-oxidant, anti-inflammatory, anti-tyrosinase and anti-tumor for skin care application were identified by XCMS. Therefore, the presence of bioactive compounds in SCG makes it a potential source of raw material for cosmetic application (e.g., anti-oxidant, anti-inflammatory, skin-whiting, and anti-aging).


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Ditpon Kotatha ◽  
Supitcha Rungrodnimitchai

Oxidized cellulose (OC) nanofiber was successfully prepared from the dry sheet of Nata De Coco (DNDC) using the mixture system of HNO3/H3PO4–NaNO2for the first time. The carboxyl content of the OC was investigated at different conditions (HNO3/H3PO4ratios, reaction times, and reaction temperatures). The results revealed that the carboxyl content of the OC increased along with the reaction time, which yielded 0.6, 14.8, 17.5, 20.9, 21.0, and 21.0% after 0, 6, 12, 36, and 48 hours, respectively. The reaction yields of the OC ranged between 79% and 85% when using HNO3/H3PO4ratio of 1 : 3, 1.4% wt of NaNO2at 30°C at different reaction times. From the structural analysis, the OC products showed a nanofibrous structure with a diameter of about 58.3–65.4 nm. The Fourier transform infrared spectra suggested the formation of carboxyl groups in the OC after oxidation reaction. The crystallinity and crystalline index decreased with an increase of reaction time. The decrease of crystallinity from oxidation process agreed with the decrease of degree of polymerization from the hydrolysis ofβ-1,4-glycosidic linkages in the cellulose structure. The thermal gravimetric analysis results revealed that the OC products were less thermally stable than the raw material of DNDC. In addition, the OC products showed blood agglutinating property by dropping blood on the sample along with excellent antibacterial activity.


Batteries ◽  
2019 ◽  
Vol 5 (4) ◽  
pp. 69 ◽  
Author(s):  
Khaleel I. Hamad ◽  
Yangchuan Xing

Lithium-rich layered oxide cathode materials of Li1.2Mn0.5100Ni0.2175Co0.0725O2 have been synthesized using metal salts with acetate and nitrate anions as precursors in glycerol solvent. The effects of the precursor metal salts on particle size, morphology, cationic ordering, and ultimately, the electrode performance of the cathode powders have been studied. It was demonstrated that the use of cornstarch as a gelling agent with nitrate-based metal salts results in a reduction of particle size, leading to higher surface area and initial discharge capacity. However, the cornstarch gelling effect was minimized when acetate salts were used. As observed in the Fourier-transform infrared spectroscopy analysis, cornstarch can react with acetates to form acetyl groups during the synthesis, effectively preventing the cornstarch gel from capping the particles, thus leading to larger particles. A tradeoff was found when nitrate and acetate salts were mixed in the synthesis. It was shown that the new cathode powder has the best cationic ordering and capacity retention, promising a much stable Li-rich cathode material for lithium-ion batteries.


2020 ◽  
Vol 1008 ◽  
pp. 39-46
Author(s):  
Mostafa Khaled ◽  
H. Noby ◽  
W.A. Aissa ◽  
Ahmed Hassan El-Shazly

Micro-porous hydrophilic membranes were successfully fabricated using polystyrene waste by phase inversion casting. Four concentrations (20, 25, 30, and 35 wt%) of recycled high-impact polystyrene (HIPS-R) in N, N-dimethyl formamide (DMF) solution were employed to prepare the membranes. The effect of polystyrene concentration on the characteristics of the different membranes was thoroughly studied. Based on the Fourier transform infrared spectroscopy (FTIR) results, the chemical composition of HIPS-R was analogous to that of pure high-impact polystyrene HIPS raw material of the previous studies. Also, field-emission scanning electron microscopy (FESEM) was employed to study the morphology and porosity of the prepared membranes. The membranes cross-section showed a sponge structure with longitudinal macro voids. The solid walls around these voids have a sponge-like structure, especially for high concentration polystyrene membranes. Furthermore, the number of pores into the membrane surface decreased with the increase of polystyrene concentration. The membranes surface pores size was ranged from 150 nm to 550 nm with the different used concentrations. Water contact angle (CA) of the prepared membrane's surface were measured. All the measured CA of the prepared membranes, except the 35 wt% showed CA of 91o, showed a hydrophilic behavior. Thus, the results suggest effective membranes could be obtained using recycled polystyrene. And then, solve the polymer waste accumulation problem in parallel with help in drinking water crisis solution.


2015 ◽  
Vol 813-814 ◽  
pp. 885-889 ◽  
Author(s):  
Ranganathan Balakumar ◽  
G. Sriram ◽  
S. Arumugam ◽  
V. Abhijith Koushal ◽  
Villa Sai Surya Venkatesh

Biofuel plays a major role in IC engine nowadays. Used Ayurvedic Oil (UAO) is one among the alternative fuels utilized. The preliminary property studies were carried out and the UAO had undergone simple Transesterification process to be converted to Used Ayurvedic Oil Methyl Ester (UAOME). The Fourier Transform Infrared (FTIR) spectroscopy analysis confirmed the UAO to UAOME conversion. The Trobological investigation on UAOME is also conducted using Four Ball Wear Tester. The results showed that lower wear scar was observed in UAOME comparatively with diesel. From the results it is clear that the UAO can be a novel partial substitute for diesel fuel.


2016 ◽  
Vol 16 (2) ◽  
pp. 143-155 ◽  
Author(s):  
Brij Bhushan ◽  
Arunima Nayak ◽  
Kamaluddin

AbstractThe role of manganese oxides in concentrating organic moieties and offering catalytic activity for prebiotic reactions is investigated by studying their interaction with different aromatic amines such as aniline, p-chloroaniline, p-toluidine and p-anisidine. For all amines, metal oxides showed highest adsorption at neutral pH. The order of their adsorption capacity and affinity as revealed by the Langmuir constants was found to be manganosite (MnO) > bixbyite (Mn2O3) > hausmannite (Mn3O4) > and pyrolusite (MnO2). At alkaline pH, these manganese oxides offered their surfaces for oxidation of amines to form coloured oligomers. Analysis of the oxidation products by gas chromatography–mass spectrometry showed the formation of a dimer from p-anisidine and p-chloroaniline, while a trimer and tetramer is formed from p-toluidine and aniline, respectively. A reaction mechanism is proposed for the formation of the oligomers. While field-emission scanning electron microscopic studies confirm the binding phenomenon, the Fourier transform infrared spectroscopy analysis suggests that the mechanism of binding of amines on the manganese oxides was primarily electrostatic. The adsorption behaviour of the studied aromatic amines followed the order: p-anisidine > p-toluidine > aniline > p-chloroaniline, which is related to the basicities and structure of the amines. Our studies confirmed the significance of the role of manganese oxides in prebiotic chemistry.


2014 ◽  
Vol 116 (6) ◽  
pp. 1058-1068 ◽  
Author(s):  
Kirsi Silvennoinen ◽  
Juha-Matti Katajajuuri ◽  
Hanna Hartikainen ◽  
Lotta Heikkilä ◽  
Anu Reinikainen

Purpose – The purpose of this paper is to determine the volume and quality of food waste in Finnish households and discuss drivers for waste being produced. Design/methodology/approach – In total, 380 households weighed all solid food waste and liquid milk waste daily each time they disposed food during a two-week period. The authors concentrated only on avoidable food waste, i.e. all wasted food and raw material that could have been consumed, had they been stored or prepared differently. Other biowaste, such as vegetable peelings, coffee grounds, or bones, was not measured. Findings – The amount of food waste in households ranged from 0 to 160 kg/year. The average annual food waste was 23 kg per capita, 63 kg per household, and in total about 120 million kg/year. When comparing purchased food amount with avoidable food waste, the average waste was about 4-5 per cent. The main discarded foodstuffs were vegetables, home-cooked food and milk products. The principal reasons for disposing of foodstuffs were spoilage: e.g. mould, expiry of best before or use by date, plate leftovers, and preparing more food than needed. When examining waste per person, singles generally produced most waste. Practical implications – Knowledge about food waste will help development of new practices to decrease waste. Originality/value – The study estimated amounts of food waste in households using diaries and weighing. Such studies have often been based on statistics or interviews rather than exact weighing of waste.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Alexander Petutschnigg ◽  
Michael Stöckler ◽  
Florian Steinwendner ◽  
Julian Schnepps ◽  
Herwig Gütler ◽  
...  

Recently, the production of skis with wooden cores has increased due to changes in customer awareness concerning ecological issues and rising raw material costs for mineral oil resources. The preparation of ski surfaces is one of the main expense factors in the production of skis. Thus, one perspective of the AMER SPORTS CORPORATION is to treat wood surfaces with laser beams to develop new aesthetic possibilities in ski design. This study deals with different laser treatments for samples from various wood species: beech, ash, lime, and spruce. The parameters investigated are laser beam intensity and number of laser points on the surface. To evaluate the aesthetic changes, the CIELab color measurements were applied. Changes in the main wood components were observed by the Fourier transform infrared spectroscopy (FTIR) using an ATR (attenuated total reflectance) unit. The results show that the laser treatments on wood surfaces have an influence on wood color and the chemical composition. Especially the intensity of laser beams affects the color changes in different patterns for the parameters observed. These findings will be useful to develop innovative design possibilities of wood surfaces for ski cores as well as for further product design applications (e.g., mass customization).


Sign in / Sign up

Export Citation Format

Share Document