scholarly journals Enhancement of Spinach Growth as Affected by the Addition of Sodium Chloride to the Nutrient Solution under Artificial Light Condition.

1997 ◽  
Vol 9 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Masaharu MASUDA ◽  
Motofumi NOMURA
2021 ◽  
pp. 39-44
Author(s):  
O. R. Udalova ◽  
L. M. Anikina ◽  
G. V. Mirskaya ◽  
P. Yu. Kononchuk ◽  
G. G. Panova

Relevance. The year-round provision of the population of our country with fresh vegetable products remainsis relevant. The creation and widespread implementation of high-tech automated phytotechnological complexes based on innovative technologies for growing plants in intensive light culture, including the development of new-generation root-dwelling environments, low-volume and thin-layer analogs of soil and systems for providing plants with water and mineral nutrition elements, is one of the promising ways to solve this problem.The purpose. Assessment of the influence of root environment conditions on the production process of cucumber plants in intensive light culture is the aim of our work.Methods. The research was carried out under controlled conditions of intensive artificial-light culture, when growing a hybrid of cucumber Tristan F1 by using of low-volume and thin-layer analogs of soil with the supply of a nutrient solution to the plant roots through a slit capillary and by drip irrigation with the use of plant growing light equipment developed at Agrophysical Institute.Results. Evaluation of the influence of the conditions of the root environment - alow-volume analogue of the soil based on high-moor peat – agrophyte and a thin-layer analog of the soil based on a clay suspension with a feed of nutrient solution through a slit capillary, on the production process of cucumber plants showed that in comparison with the control – a low-volume analog of the soil-agrophyte with a feed of nutrient solution by drip irrigation, there is growth acceleration of the cucumber hybrid Tristan F1 in the form of a positive trend and reliable values; as well as a significant increase in the number of fruits by 38-43%, the weight of fruits by 52-53% from the plant; an increase in the accumulation of raw by 38-40% and dry weight by 27-32% by cucumber leaves; an increase in the leaf surface area by 38-40%, leaf water content by 7.3- 9.6%; a significant or positive trend increase in the content of calcium in cucumber fruits by 18-29%, magnesium by 20-29%, iron by 5-16%, vitamin C by 17-23%, while the content of heavy metals and nitrates does not exceed exceeded the MPC in all variants. Methods of growing plants on low-volume and thin - layer analogs of soil with the supply of a nutrient solution to the roots through a slit capillary can be recommended for any cultivation facilities in conditions of intensive light culture.


Sci ◽  
2019 ◽  
Vol 1 (2) ◽  
pp. 51 ◽  
Author(s):  
Ana Costa ◽  
Luís Dias ◽  
Alexandra Dias

The seeds of red clover are heteromorphic and two color morphs can be visually recognized, light purple and yellow, resulting from heterozygosity and recessive homozygosity at two loci. Here, we report the responses of seed imbibition, seed germination, and early seedling growth of the two morphs to distilled water, sodium chloride, and complete nutrient solution. The sensitivityof red clover seeds to treatments increased with the stage of development in what seems to be a cumulative process. No differences were found in seed imbibition between morphs or between treatments. In seedling growth, on the contrary, treatments were always effective, but differences between morphs were only observed in seeds that were treated with nutrient solution, whereas in the intermediate stage of seed germination, the effects by treatments were observed together with the appearance of differences between morphs in distilled water and in the treatment by sodium chloride solution. Simultaneously, the superior performance of the yellow morph that was found in germination, which appears to be a trait stable across cultivars of red clover seeds, turned into a superior performance of the light purple morph in seedling growth.


2021 ◽  
Vol 924 (1) ◽  
pp. 012013
Author(s):  
S Islam ◽  
M N Reza ◽  
M Chowdhury ◽  
M N Islam ◽  
M Ali ◽  
...  

Abstract The productivity of horticultural crops in an artificial light condition are highly influenced by the structure of plant and the area coverage. Accurate measurement of leaf area is very important for predicting plant water demand and optimal growth. In this paper, we proposed an image processing algorithm to estimate the ice-plant leaf area from the RGB images under the artificial light condition. The images were taken using a digital camera and the RGB images were transformed to grayscale images. A binary masking was applied from a grayscale image by classifying each pixel, belonging to the region of interest from the background. Then the masked images were segmented and the leaf region was filled using region filling technique. Finally, the leaf area was calculated from the number of pixel and using known object area. The experiment was carried out in three different light conditions with same plant variety (Ice-plant, Mesembryanthemum crystallinum). The results showed that the correlation between the actual and measured leaf area was found over 0.97 (R2:0.973) by our proposed method. Different light condition also showed significant impact on plant growth. Our results inspired further research and development of algorithms for the specific applications.


HortScience ◽  
2009 ◽  
Vol 44 (3) ◽  
pp. 707-711 ◽  
Author(s):  
Francesco Giuffrida ◽  
Marianna Martorana ◽  
Cherubino Leonardi

Tomato plants (Solanum lycopersicum L. cv. Durinta) were grown in an open soilless system to evaluate the effects of sodium chloride (NaCl) concentration in the nutrient solution on the ion compositions in plant tissues. The treatments were defined by a factorial combination of five NaCl concentrations and three leaves position/age and two fruits' position. Seedlings were transplanted in perlite and, 7 days after transplanting, five salinity treatments were imposed by adding 7, 21, 37, 49, or 64 mm of NaCl to the nutrient solutions; the final electrical conductivities were: 2.7, 4.5, 6.0, 7.5, and 8.6 dS·m−1, respectively. Increased salinity in the nutrient solution resulted in a reduction in tomato dry matter (from 534 to 375 g per plant) and in a linear increase in sodium (from 0.37% to 1.39%) and chloride (from 1.75% to 5.73%) in the leaves as well as in the fruit tissues (from 0.08% to 0.26% for sodium and from 0.63% to 1.34% for chloride). Leaf under the first cluster showed higher levels of sodium (+54%) and chloride (+32%) than leaf under the fifth cluster and old leaf accumulated more sodium (+15%) and chloride (+25%) than younger ones. The exposure of the tomato plants to increasing salinity resulted in a linear decline in nitrate (from 1.21% to 0.50%), total nitrogen (from 3.31% to 3.03%), sulphate (from 3.71% to 3.12%), and potassium leaves (from 2.76% to 1.51%); the potassium reduction was more evident in younger leaves than in older ones. All macronutrients, except calcium, decreased in the fruit tissues with increasing NaCl concentration in the nutrient solution. However, for phosphate, the reduction of the ion concentration was evident only in the fruit from the fifth cluster (–35%). The position of the fruit on the plant significantly affected the concentration of ion, which was higher for all determined ions in the fruit of the first truss. The levels of Na+ and Cl– found in the plant tissue seem to confirm the hypothesis that the plant dry biomass reduction may also be traced to the toxicity of these ions as a consequence of this high concentration. On the other hand, although generally influenced by antagonism with sodium and chloride, the amount of main macronutrients did not reach deficiency levels that influenced the growth processes, except in the case of potassium.


Sign in / Sign up

Export Citation Format

Share Document