scholarly journals Assessment of carotenoid degradation of grits from orange corn packaged in high barrier thermosealed pouches

Author(s):  
Darwin Ortiz ◽  
Ingrid Aragón ◽  
Sean Renwick ◽  
Jhoan Rodriguez-Yara ◽  
Tyler Lawson ◽  
...  

Genetically improved maize varieties with high carotenoid levels and dark orange color have been developed to increase dietary consumption of macular carotenoids. However, postharvest and food processing conditions can cause isomerization and oxidation of carotenoids, reducing their potential impact on consumers' health. The purpose of this study was to assess the effectiveness of high barrier pouches in reducing carotenoid losses during the storage of dry-milled corn products. Orange corn grits were packaged in paper pouch bags, and three types of low-oxygen and low-moisture permeable (LOMP) pouches. Grits were packaged in each type of LOMP pouch with (LOMP-oxy) and without (LOMP-noxy) an oxygen scavenger. For six months, all pouches were stored at semi-controlled environmental conditions (22.5 ± 1.3°C, 32 ± 18% RH). After the storage period, orange corn grits stored in paper pouch bags lost 55% of total xanthophylls, whereas grits packaged in LOMP pouches only lost 8% of total xanthophylls. Orange Corn grits packaged in LOMP-oxy pouches had slightly higher carotenoid content than in LOMP-noxy pouches. Relative humidity fluctuation in the storeroom could have caused fluctuation in moisture content in the orange corn grits packaged in paper pouches, which may affect the rate of carotenoid degradation in the orange corn grits. Therefore, an effective control of the moisture content of the packaged dry-milled product and effective control of the temperature of pouches during storage conditions is essential to maximize carotenoid retention during the storage of dry-milled high carotenoid orange corn grits.

2016 ◽  
Vol 46 (11) ◽  
pp. 1932-1937 ◽  
Author(s):  
Patrícia Pereira de Souza ◽  
Sérgio Yoshimitsu Motoike ◽  
Mychelle Carvalho ◽  
Kacilda Naomi Kuki ◽  
Eduardo Euclydes de Lima e Borges ◽  
...  

ABSTRACT: Macauba palm stands out for having favorable features to biodiesel production such as the high oil content of its fruit. Considering the great potential of the species and their applicability in the renewable energy field, it becomes indispensable to establish the right conditions for storing the seeds for propagation purpose. The aim of this research was to evaluate the effect of seed moisture content, packaging, and storage conditions such as temperature and relative humidity on the quality of seeds from Minas Gerais State, during a 12-month storage period. The research had two independent assays: (I) the seeds were stored with three moisture contents/ranges 4.0≤6.0%; 6.0≤8.0% and 8.0≤10.0% in impermeable packages, under room temperature and at 10ºC; (II) seeds with approximately 5.9% of moisture content were stored in three different types of packages: a) permeable, b) semi-permeable and c) impermeable. Three storing conditions were tested: a) room temperature and RH under laboratory conditions; b) 15ºC and 45% RH; c) 20ºC and 55% RH. Water content, germination rate and germination speed index were evaluated at 0, 4, 8 and 12 months of storing. The best germination results were obtained with the moisture range of 6.0≤8.0%, with seeds kept at room temperature; while the seeds stored at 10ºC, regardless the moisture range, did not survive. The stored seeds with 5.9% moisture content and at both 15ºC/45%RH and 20ºC/55% RH conditions, independently of the package type used, showed the best results. Thus, macaw palm seeds can be classified as intermediates seeds.


Author(s):  
B. Balla ◽  
I. J. Holb

The aim of our two-year study was to evaluate fruit decay and Monilinia fruit rot in three controlled atmospheres (CA), ultra-low oxygen (ULO) and traditional storage methods on apples for a duration of several months storage period. Four phytopathological treatments were studied under each storage condition: 1) 48 healthy fruit per unit, 2) 48 injured fruit per unit, 3) 47 healthy fruit and 1 brown rotted fruit per unit, and 4) 47 injured fruit and 1 brown rotted fruit per unit. Our results clearly demonstrated that fruit loss during storage is highly influenced by storage conditions and health status of the stored fruits. In the 2005 experiment, the lowest and largest fruit decay occurred under the ULO and traditional storage conditions, respectively (Table 1). The fruit decay was significantly different for the different storage methods. Fruit decay was fully suppressed in ULO storage except in the treatments of injured and injured + 1 brown rotted apple. Under CA and traditional storage conditions, when healthy fruit was stored, fruit decay was significantly lower compared with injured fruit including 1 brown rotted fruits. However, half of the fruit decay was caused by M. fructigena in CA store irrespective to phytopathogenic treatments. In 2006, results were not so consistent on cv. Idared but were not essentially different from the 2005 experiments.


Revista CERES ◽  
2016 ◽  
Vol 63 (3) ◽  
pp. 305-314 ◽  
Author(s):  
David Aquino da Costa ◽  
Virgínia de Souza Álvares ◽  
Roberta Martins Nogueira ◽  
Jorge Ferreira Kusdra ◽  
Vlayrton Tomé Maciel ◽  
...  

ABSTRACT The traditional system of collection and storage of Brazil nut compromises seriously the quality of these almonds as it contributes to the high incidence of contaminants, like fungi of the genus Aspergillus, which can produce aflatoxins. In this study, the objective was to evaluate the influence of the storage period in studied conditions, on the physicochemical characteristics and on the microbiological contamination of Brazil nuts. The experimental was designed as completely randomized, considering as treatments the storage period (0 - control, 30, 60, 90, 120 and 150 days) with four replicates of 3 kg of Brazil nuts each. The samples were submitted to physicochemical and microbiological analysis. It was observed that almonds submitted to the storage had their moisture content reduced by 78.2% at 150 days of storage, however, this reduction was not fast enough to avoid surface contamination by filamentous and potentially aflatoxins producing fungi. The critical period of contamination occurred on the first 30 days of storage when there was an increase of the studied fungi, as well as B1 and total aflatoxin. The studied storage conditions were four times more effective in reducing the product moisture content than the traditional methods, however, pre-drying is necessary to avoid contamination of the product.


Author(s):  
D.M.C. Champathi Gunathilake ◽  
J. Bhat ◽  
I.R. Singh ◽  
K.A. Tharanga Kahandawala

This research study was carried out for 16 weeks to evaluate the effect of ambient storage conditions on the physical properties of soybean. Two soybean varieties named Pb-1 and PM-13 were used for the experiment. The hardness, bulk density, moisture content and thousand seed mass changed significantly within the storage period (P less than 0.05). Hardness and bulk density of seeds increased with time while thousand seed mass and moisture content decreased with storage time in both varieties. The ‘L’ and ‘a’ color values were not changed significantly with storage time however, the ‘b’ color values were significantly altered with storage time in both varieties. Seed physical property changers are directly affected to its processing conditions such as grading, separation, drying and grinding. Therefore, soybean processing conditions and processing power requirements required to be altered accordingly.


Author(s):  
O. A. Zadorozhna ◽  
T. P. Shyianova ◽  
M.Yu. Skorokhodov

Seed longevity of 76 spring barley gene pool samples (Hordeum vulgare L. subsp. distichon, convar. distichon: 56 nutans Schubl., two deficience (Steud.) Koern., two erectum Rode ex Shuebl., two medicum Koern.; convar. nudum (L.) A.Trof.: one nudum L. та subsp. vulgare: convar. vulgare: nine pallidum Ser., three rikotense Regel.; convar. coeleste (L.) A.Trof.: one coeleste (L.) A.Trof.) from 26 countries, 11 years and four places of reproduction was analyzed. Seeds with 5–8% moisture content were stored in chamber with unregulated and 4oC temperature. The possibility of seed storage under these conditions for at least 10 years without significant changes in germination has been established. The importance of meteorological conditions in the formation and ripening of seeds for their longevity is confirmed. The relationship between the decrease of barley seeds longevity and storage conditions, amount of rainfall, temperature regime during the growing season of plants is discussed.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Yuan Su ◽  
Yang Xu ◽  
Tao Cui ◽  
Xiaojun Gao ◽  
Guoyi Xia ◽  
...  

Abstract Background How to control the physical damage during maize kernel harvesting is a major problem for both mechanical designers and plant breeders. A limitation of addressing this problem is lacking a reliable method for assessing the relation between kernel damage susceptibility and threshing quality. The design, construction, and testing of a portable tool called “HANDY”, which can assess the resistance to mechanical crushing in maize kernel. HANDY can impact the kernel with a special accelerator at a given rotating speed and then cause measurable damage to the kernel. These factors are varied to determine the ideal parameters for operating the HANDY. Results Breakage index (BI, target index of HANDY), decreased as the moisture content of kernel increased or the rotating speed decreased within the tested range. Furthermore, the HANDY exhibited a greater sensitivity in testing kernels at higher moisture level influence on the susceptibility of damage kernel than that in Breakage Susceptibility tests, particularly when the centrifugation speed is about 1800 r/min and the centrifugal disc type is curved. Considering that the mechanical properties of kernels vary greatly as the moisture content changes, a subsection linear (average goodness of fit is 0.9) to predict the threshing quality is built by piecewise function analysis, which is divided by kernel moisture. Specifically, threshing quality is regarded as a function of the measured result of the HANDY. Five maize cultivars are identified with higher damage resistance among 21 tested candidate varieties. Conclusions The HANDY provides a quantitative assessment of the mechanical crushing resistance of maize kernel. The BI is demonstrated to be a more robust index than breakage susceptibility (BS) when evaluating threshing quality in harvesting in terms of both reliability and accuracy. This study also offers a new perspective for evaluating the mechanical crushing resistance of grains and provides technical support for breeding and screening maize varieties that are suitable for mechanical harvesting.


Author(s):  
Razieh Niazmand ◽  
Samira Yeganehzad

Abstract Background Barberry has long been used as an herbal remedy since ancient times which is found throughout temperate and subtropical regions of the world. Given the short harvesting season and limited shelf life of the barberry, we evaluated the possibility of using modified atmosphere packaging and oxygen-scavenger sachets to increase its storage period. For this purpose, the physicochemical characterization (antioxidant activity, anthocyanin, phenolic compounds, and ascorbic acid content, acidity, firmness, color, and decay incident) of fresh barberry samples packaged within different atmospheres was investigated over 4 weeks of storage at 4 and 25 °C. The barberries were packaged with low-density polyethylene/polyester (LDPE/PET) films under natural atmosphere (C), N2 gas (N), vacuum (V), or in the presence of an oxygen scavenger (OS). Results The results revealed that with increased storage period, the O2 and CO2 levels inside the packages decreased and increased, respectively. The antioxidant activity and amounts of anthocyanin, phenolic compounds, and ascorbic acid all decreased with increasing storage period. Among the studied atmospheres, the OS and, subsequently, V packages were most capable of maintaining the quality of fresh barberries, with the decay incidence being approximately 30 times lower inside these packages relative to the control. Increasing the storage temperature accelerated the intensity of chemical changes and decay across all samples. Conclusion The barberries inside the OS packages stored at 4 °C (and even at 25 °C) still had good sensory properties in terms of chemical properties, texture, and color after 4 weeks. Fortunately, it seems that this packaging technology makes the exportation and delayed consumption of the fresh barberry possible by maintaining its quality.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 850
Author(s):  
Annalaura Lopez ◽  
Federica Bellagamba ◽  
Erica Tirloni ◽  
Mauro Vasconi ◽  
Simone Stella ◽  
...  

Caviar is a semi-preserved fish preparation in which cold storage (around 0 °C) and packaging under anaerobic conditions are fundamental to guarantee adequate safety parameters. Consumers seem to prefer caviar prepared with food salt only, but according to the needs of the different distribution channels, some preservatives are used in order to prolong its shelf life and to allow less restrictive storage conditions. Traditionally, the most common preservative was sodium tetraborate (borax), a salt that contributes to the sensory profile of caviar. However, due to its toxicity, borax has been banned in many countries, and the current trend is to reduce or eliminate its use. In this study, we evaluated the evolution of food safety parameters (pH, water activity, microbiological parameters) and the volatile profile during 14 months of storage in caviar samples treated with three different preservatives: I. exclusively NaCl, II. a mixture of borax and NaCl, and III. a mixture of organic acids and salts. Microbial presence was studied by means of plate counts; volatile organic compounds were identified on the sample headspace by means of solid phase microextraction with gas-chromatography and mass spectrometry. Results showed relevant differences among the three treatments investigated, with salt samples characterized by the highest viable counts and the greatest presence of volatile products driven by oxidative and spoilage processes, mainly occurring toward lipid and amino acids. On the contrary, the mixture of organic acids and salts showed the best response during the entire storage period. Finally, the employment of a multiparametric statistic model allowed the identification of different clusters based on the time of ripening and the preservative treatments used.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 910
Author(s):  
María I. Sáez ◽  
María D. Suárez ◽  
Francisco J. Alarcón ◽  
Tomás F. Martínez

This study evaluates the potential of different algae extracts (Crassiphycus corneus, Cc; Ulva ohnoi, Uo; Arthrospira platensis, Ap; Haematococcus pluvialis, Hp) as additives for the preservation of rainbow trout fillets. The extracts were prepared with different water to ethanol ratios from the four algae species. The highest ferric reducing antioxidant power (FRAP) was observed in Uo extracted in 80% ethanol. Ap aqueous extract also had considerable FRAP activity, in agreement with a high total phenolic content. Radical scavenging activity (DPPH) was higher in Cc 80% ethanol extract, in agreement with a high total carotenoid content. In fact, when the algae aqueous extracts were assayed on the fish fillets, their antioxidant activity exceeded that of ascorbic acid (ASC). All algae extracts delayed microbial growth and lipid oxidation processes in trout fillets throughout the cold storage period compared to controls, and also improved textural parameters, these effects being more evident for Ap and Hp. With respect to the color parameters, the Hp extract prevented the a* values (redness) from decreasing throughout cold storage, a key point when it comes to colored species, not least salmonids. On the other hand, the Ap extract was not as effective as the rest of treatments in avoiding a* and b* decrease throughout the storage period, and thereby the color parameters were impaired. The results obtained, together with the natural origin and the viability for large-scale cultivation, make algae extracts interesting fish preservative agents for the food industry.


2021 ◽  
Vol 11 (13) ◽  
pp. 5902
Author(s):  
Rafael Nguenha ◽  
Maral Seidi Damyeh ◽  
Anh D. T. Phan ◽  
Hung T. Hong ◽  
Mridusmita Chaliha ◽  
...  

Mycotoxins are naturally occurring toxins produced by certain types of fungi that contaminate food and feed, posing serious health risks to human and livestock. This study evaluated the combination of blue light with curcumin to inactivate Aspergillus flavus spores, its effect on aflatoxin B1 (AFB1) production and maintaining carotenoid content in three maize varieties. The study was first conducted in vitro, and the spore suspensions (104 CFU·mL−1) were treated with four curcumin concentrations (25 and 50 µM in ethanol, 1000 and 1250 µM in propylene glycol) and illuminated at different light doses from 0 to 130.3 J·cm−2. The photoinactivation efficiency was light-dose dependent with the highest photoinactivation of 2.3 log CFU·mL−1 achieved using 1000 µM curcumin at 104.2 J·cm−2. Scanning electron microscopy revealed cell wall deformations as well as less density in photosensitized cells. Photosensitization of maize kernels gave rise to a complete reduction in the viability of A. flavus and therefore inhibition of AFB1 production, while no significant (p > 0.05) effect was observed using either light or curcumin. Moreover, photosensitization did not affect the carotenoids in all the studied maize varieties. The results suggest that photosensitization is a green alternative preservation technique to decontaminate maize kernels and reduce consumer exposure to AFB1 without any effect on carotenoid content.


Sign in / Sign up

Export Citation Format

Share Document