scholarly journals Structure, in Vivo Detection and Anti-Bacterial Activity of Metabolites of SQ109, an Anti-Infective Drug Candidate

Author(s):  
Satish Malwal ◽  
Matthew D. Zimmerman ◽  
Nadine Alvarez ◽  
Jansy Sarathy ◽  
Veronique Dartois ◽  
...  

<p>SQ109 is a drug candidate for the treatment of tuberculosis (TB). It is thought to target primarily the protein MmpL3 in <i>Mycobacterium tuberculosis</i>, but it also inhibits the growth of some other bacteria, as well as fungi and protozoa. SQ109 is metabolized by the liver, and it has been proposed that some of its metabolites might be responsible for its activity against TB. Here, we synthesized six potential P450 metabolites of SQ109 and used these as well as 10 other likely metabolites as standards in a mass spectrometry study of <i>M. tuberculosis</i>-infected rabbits treated with SQ109, in addition to testing all 16 putative metabolites for anti-bacterial activity. We found that there were just two major metabolites in lung tissue: a hydroxy-adamantyl analog of SQ109 and N’-adamantylethylenediamine. Neither of these, or the other potential metabolites tested, inhibited the growth of <i>M. tuberculosis</i>, or of <i>M. smegmatis</i>, <i>Bacillus subtilis</i> or <i>E. coli</i>, making it unlikely that an SQ109 metabolite contributes to its anti-bacterial activity. In the rabbit TB model, it is thus the gradual accumulation of non-metabolized SQ109 in tissues to therapeutic levels that leads to good efficacy. Our results also provide new insights into how SQ109 binds to its target MmpL3, based on our mass spectroscopy results which indicate that the charge in SQ109 is primarily localized on the geranyl nitrogen, explaining the very short distance to a key Asp found in the X-ray structure of SQ109 bound to MmpL3. Our results also suggest that it is intact SQ109 that is likely to target some of the other bacteria, fungi and protozoa in which MmpL3-like proteins have recently been reported.</p>

2021 ◽  
Author(s):  
Satish Malwal ◽  
Matthew D. Zimmerman ◽  
Nadine Alvarez ◽  
Jansy Sarathy ◽  
Veronique Dartois ◽  
...  

<p>SQ109 is a drug candidate for the treatment of tuberculosis (TB). It is thought to target primarily the protein MmpL3 in <i>Mycobacterium tuberculosis</i>, but it also inhibits the growth of some other bacteria, as well as fungi and protozoa. SQ109 is metabolized by the liver, and it has been proposed that some of its metabolites might be responsible for its activity against TB. Here, we synthesized six potential P450 metabolites of SQ109 and used these as well as 10 other likely metabolites as standards in a mass spectrometry study of <i>M. tuberculosis</i>-infected rabbits treated with SQ109, in addition to testing all 16 putative metabolites for anti-bacterial activity. We found that there were just two major metabolites in lung tissue: a hydroxy-adamantyl analog of SQ109 and N’-adamantylethylenediamine. Neither of these, or the other potential metabolites tested, inhibited the growth of <i>M. tuberculosis</i>, or of <i>M. smegmatis</i>, <i>Bacillus subtilis</i> or <i>E. coli</i>, making it unlikely that an SQ109 metabolite contributes to its anti-bacterial activity. In the rabbit TB model, it is thus the gradual accumulation of non-metabolized SQ109 in tissues to therapeutic levels that leads to good efficacy. Our results also provide new insights into how SQ109 binds to its target MmpL3, based on our mass spectroscopy results which indicate that the charge in SQ109 is primarily localized on the geranyl nitrogen, explaining the very short distance to a key Asp found in the X-ray structure of SQ109 bound to MmpL3. Our results also suggest that it is intact SQ109 that is likely to target some of the other bacteria, fungi and protozoa in which MmpL3-like proteins have recently been reported.</p>


2010 ◽  
Vol 192 (11) ◽  
pp. 2757-2768 ◽  
Author(s):  
Mark D. Gonzalez ◽  
Esra A. Akbay ◽  
Dana Boyd ◽  
Jon Beckwith

ABSTRACT A bioinformatic analysis of nearly 400 genomes indicates that the overwhelming majority of bacteria possess homologs of the Escherichia coli proteins FtsL, FtsB, and FtsQ, three proteins essential for cell division in that bacterium. These three bitopic membrane proteins form a subcomplex in vivo, independent of the other cell division proteins. Here we analyze the domains of E. coli FtsL that are involved in the interaction with other cell division proteins and important for the assembly of the divisome. We show that FtsL, as we have found previously with FtsB, packs an enormous amount of information in its sequence for interactions with proteins upstream and downstream in the assembly pathway. Given their size, it is likely that the sole function of the complex of these two proteins is to act as a scaffold for divisome assembly.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5759
Author(s):  
Arthur Ungerer ◽  
Theresa Staufer ◽  
Oliver Schmutzler ◽  
Christian Körnig ◽  
Kai Rothkamm ◽  
...  

The growing field of cellular therapies in regenerative medicine and oncology calls for more refined diagnostic tools that are able to investigate and monitor the function and success of said therapies. X-ray Fluorescence Imaging (XFI) can be applied for molecular imaging with nanoparticles, such as gold nanoparticles (GNPs), which can be used in immune cell tracking. We present a Monte Carlo simulation study on the sensitivity of detection and associated radiation dose estimations in an idealized setup of XFI in human-sized objects. Our findings demonstrate the practicability of XFI in human-sized objects, as immune cell tracking with a minimum detection limit of 4.4 × 105 cells or 0.86 μg gold in a cubic volume of 1.78 mm3 can be achieved. Therefore, our results show that the current technological developments form a good basis for high sensitivity XFI.


2019 ◽  
Author(s):  
James Mullin ◽  
John Kalhorn ◽  
Nicholas Mello ◽  
Amanda Raffa ◽  
Alexander Strakosha ◽  
...  

AbstractHuman Bax Inhibitor-1 (HsBI-1/TMBIM6) is the founding member of the evolutionary conserved TMBIM superfamily of proteins that share sequence homology within the transmembrane Bax inhibitor-containing motif (TMBIM). Mechanistically, BI-1/TMBIM6 and all the other mammalian TMBIM proteins appear to be involved in the maintenance of calcium homeostasis, and the crystal structure of a bacterial TMBIM protein, BsYetJ, suggests that the protein is a pH-sensitive calcium leak. The budding yeast, Saccharomyces cerevisiae, has a single TMBIM family member (YNL305C) named Bxi1p/Ybh3p. To determine the function of Bxi1p/Ybh3p, we overexpressed Bxi1p-EGFP in E. coli to determine if it is a calcium channel. We show that bacterial cells expressing Bxi1p-EGFP are more permeable to calcium than controls. Thus, our data suggests that yeast Bax inhibitor (Bxi1p) is a calcium channel in E. coli, lending support to our proposal that Bxi1p is a bona fide member of the TMBIM family of proteins. Further, we use our bacterial system to show that gadolinium is an inhibitor of Bxi1p in vivo, suggesting a path forward to identifying other small-molecular inhibitors of this clinically-important and highly conserved superfamily of proteins. Finally, parallel experiments revealed that the human Bax Inhibitor-1 (HsBI-1/TMBIM6) is also a calcium channel in bacteria that can be inhibited by gadolinium.


Genetics ◽  
1986 ◽  
Vol 114 (3) ◽  
pp. 669-685
Author(s):  
Karin Carlson ◽  
Aud Ȗvervatin

ABSTRACT Bacteriophage T4 mutants defective in gene 56 (dCTPase) synthesize DNA where cytosine (Cyt) partially or completely replaces hydroxymethylcytosine (HmCyt). This Cyt-DNA is degraded in vivo by T4 endonucleases II and IV, and by the exonuclease coded or controlled by genes 46 and 47.—Our results demonstrate that T4 endonuclease II is the principal enzyme initiating degradation of T4 Cyt-DNA. The activity of endonuclease IV, but not that of endonuclease II, was stimulated in the presence of a wild-type dCMP hydroxymethylase, also when no HmCyt was incorporated into phage DNA, suggesting the possibility of direct endonuclease IV-dCMP hydroxymethylase interactions. Endonuclease II activity, on the other hand, was almost completely inhibited in the presence of very small amounts of HmCyt (3-9% of total Cyt + HmCyt) in the DNA. Possible mechanisms for this inhibition are discussed.—The E. coli RNA polymerase modified by the products of T4 genes 33 and 55 was capable of initiating DNA synthesis on a Cyt-DNA template, although it probably cannot do so on an HmCyt template. In the presence of an active endonuclease IV, Cyt-DNA synthesis was arrested 10-30 min after infection, probably due to damage to the template. Cyt-DNA synthesis dependent on the unmodified (33  -  55  -) RNA polymerase was less sensitive to endonuclease IV action.


2018 ◽  
Author(s):  
Andrew Lyon ◽  
Alex Zelter ◽  
Shruthi Viswanath ◽  
Alison Maxwell ◽  
Richard Johnson ◽  
...  

AbstractMicrotubule (MT) nucleation in vivo is regulated by the γ-tubulin ring complex (γTuRC), an approximately 2-megadalton complex conserved from yeast to humans. In Saccharomyces cerevisiae, γTuRC assembly is a key point of regulation over the MT cytoskeleton. Budding yeast γTuRC is composed of seven γ-tubulin small complex (γTuSC) subassemblies which associate helically to form a template from which microtubules grow. This assembly process requires higher-order oligomers of the coiled-coil protein Spc110 to bind multiple γTuSCs, thereby stabilizing the otherwise low-affinity interface between γTuSCs. While Spc110 oligomerization is critical, its N-terminal domain (NTD) also plays a role that is poorly understood both functionally and structurally. In this work, we sought a mechanistic understanding of Spc110 NTD using a combination of structural and biochemical analyses. Through crosslinking-mass spectrometry (XL-MS), we determined that a segment of Spc110 coiled-coil is a major point of contact with γTuSC. We determined the structure of this coiled-coil segment by X-ray crystallography and used it in combination with our XL-MS dataset to generate an integrative structural model of the γTuSC-Spc110 complex. This structural model, in combination with biochemical analyses of Spc110 heterodimers lacking one NTD, suggests that the two NTDs within an Spc110 dimer act independently, one stabilizing association between Spc110 and γTuSC and the other stabilizing the interface between adjacent γTuSCs.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 4096-4096
Author(s):  
D. V. Gold ◽  
D. E. Modrak ◽  
G. Newsome ◽  
H. Karacay ◽  
R. M. Sharkey ◽  
...  

4096 Background: Pancreatic cancer provides a major challenge in terms of diagnosis and treatment. We have developed an anti-MUC1 MAb, PAM4, which identifies an epitope that is more restricted to MUC1-expressed by pancreatic cancer than MUC1 from other forms of cancer. PAM4 has been studied for in vitro and in vivo detection and therapy of pancreatic cancer. Methods: The in vitro immunoassay consists of PAM4 as the capture reagent and an IgG fraction derived from a polyclonal, anti-MUC1 antiserum as the probe. For in vivo detection and therapy, PAM4 is either directly radiolabeled or used in a 2-step pretargeting protocol. Results: The PAM4-based immunoassay provided high sensitivity (77%) and specificity (95%), with a value ≥ 10.2 units/ml indicating a high likelihood of pancreatic cancer, as compared to normal and benign disease groups and non-pancreatic cancers. A direct pairwise comparison of the PAM4 and CA19–9 immunoassays for discrimination of pancreatic cancer and pancreatitis demonstrated a superior performance of the PAM4-immunoassay (P<0.003). Initial clinical studies with directly labeled 131I-PAM4 provided positive imaging in 8/10 patients, with one negative patient having only pancreatitis, and the other negative patient having a tumor that was MUC1-negative. A Phase I, dose-escalation study of 90Y-humanized PAM4 administered as a single dose to patients with advanced pancreatic cancer is in progress (Immunomedics, Inc), and has already achieved doses of 20 mCi/m2. Finally, pretargeting involving a bispecific MAb with one arm being PAM4 targeting MUC1 and the other arm capturing a hapten peptide carrying a radionuclide is under preclinical evaluation. This second generation targeting system has shown higher tumor/nontumor ratios and improved imaging (111In) as compared to directly radiolabeled PAM4. Conclusions: These results suggest that the PAM4-reactive MUC1 epitope may prove useful as a selective biomarker/target antigen for diagnosis, detection, imaging, and therapy of pancreatic cancer. (Supported in part by grants CA96924and CA98488 from the NIH). [Table: see text]


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 907-907
Author(s):  
Emmanuelle Dufour ◽  
Christine Saban-Vianey ◽  
Henri Coquelin ◽  
Yann Godfrin

Abstract E. coli. L-Asparaginase repeated injections induce immunization. Anti-Asparaginase antibodies can provoke clinical hypersensitivity reactions and/or silently inactivate enzyme activity. Consequently, L-Asparaginase clearance is increased, implying a lack of L-asparagine deamination. Firstly, we developed an assay able to detect the presence of neutralizing factors including anti-Asparaginase antibodies. Next we investigated in a mouse model if loading L-Asparaginase into red blood cells (RBC) may be a way to protect its activity against neutralizing factors. A rabbit was immunized injecting 0.5 mg of L-Asparaginase (167 IU) mixed with Freund’s adjuvant every 3 weeks for 4-fold. The animal was euthanized and the final serum collected. Part of this final serum was immuno-adsorbed onto protein A for IgG antibodies purification. L-Asparaginase activity was measured by monitoring the kinetics of ammonia generation from the hydrolysis of asparagine. This assay was adapted to a biochemistry automated analyzer. When mixed with undiluted serum from the immunized rabbit, L-Asparaginase activity (0.8 to 100 IU/ml) was totally inhibited for all the concentration range within 15 min at 37°C. In the other hand, up to 1/128 serial dilutions of serum totally inhibited 2 IU/ml L-Asparaginase. As a control, undiluted pre-immunization serum from the same animal did not significantly affect L-Asparaginase activity. To identify the neutralizing factors, IgG from serum were purified by protein-A. As performed with serum, successive dilutions of IgG were mixed with 1.25 IU/ml L-Asparaginase. The IgG inhibited enzyme activity at the 1/128 dilution by 97%, thus proving their neutralizing effect on L-Asparaginase. To simulate the presence of neutralizing antibodies in the patient, we injected 7.5 μg of rabbit IgG into OF1 mice. Control mice were injected with phosphate buffered saline (PBS). Twenty minutes later mice either received 80 IU/kg of native E. coli L-Asparaginase or the same dose entrapped into OF1 mouse RBC. L-Asparaginase was loaded into murine RBC by reversible hypotonic dialysis, followed by a resealing step. The RBC thus acts as a bioreactor where plasmatic asparagine enters and is cleaved by the entrapped L-Asparaginase inside the erythrocyte. L-Asparaginase activity inside the erythrocyte was quantified at 68 IU per ml of erythrocytes, and the extracellular enzyme activity was less to 9% of total enzyme activity. Mice were sacrificed 6 hours after the administration of native or encapsulated L-Asparaginase. Free L-Asparaginase was totally inactivated in plasma of anti-Asparaginase IgG pre-treated mice: 0.002 ±0.002 IU/ml vs 0.417 ±0.103 IU/ml in PBS pre-treated mice. In addition, when L-Asparaginase is loaded inside RBC the activity is maintained irrespective of the presence of antibodies (0.798 ±0.126 IU/ml with IgG vs 0.879 ±0.146 IU/ml without). Moreover asparagine was not deaminated in IgG pre-treated mice who received free L-Asparaginase (27 ±1.6 μmol/L), while below 2 μmol/L in all the other groups. In conclusion, this newly developed assay can predict in vivo L-Asparaginase inefficacy. In addition, L-Asparaginase loaded into RBC is protected against neutralizing antibodies and its efficacy is maintained.


1997 ◽  
Vol 41 (10) ◽  
pp. 2209-2213 ◽  
Author(s):  
J H Kim ◽  
J A Kang ◽  
Y G Kim ◽  
J W Kim ◽  
J H Lee ◽  
...  

CFC-222 is a novel fluoroquinolone containing a C-7 bicyclic amine moiety with potent antibacterial activities against gram-positive, gram-negative, and anaerobic organisms. We compared the in vitro and in vivo activities of CFC-222 with those of ciprofloxacin, ofloxacin, and lomefloxacin. CFC-222 was more active than the other fluoroquinolones tested against gram-positive bacteria. CFC-222 was particularly active against Streptococcus pneumoniae (MIC at which 90% of isolates are inhibited [MIC90], 0.2 microg/ml), Staphylococcus aureus (MIC90, 0.2 microg/ml for ciprofloxacin-susceptible strains), and Enterococcus faecalis (MIC90, 0.39 microg/ml). Against Escherichia coli and other members of the family Enterobacteriaceae, CFC-222 was slightly less active than ciprofloxacin (MIC90s for E. coli, 0.1 and 0.025 microg/ml, respectively). The in vitro activity of CFC-222 was not influenced by inoculum size, medium composition, or the presence of horse serum. However, its activity was decreased significantly by a change in the pH of the medium from 7.0 to 6.0, as was the case for the other quinolones tested. The in vivo protective efficacy of CFC-222 by oral administration was greater than those of the other quinolones tested in a mouse model of intraperitoneally inoculated systemic infection caused by S. aureus. CFC-222 exhibited efficacy comparable to that of ciprofloxacin in the same model of infection caused by gram-negative organisms, such as E. coli and Klebsiella pneumoniae. In this infection model, CFC-222 was slightly less active than ciprofloxacin against Pseudomonas aeruginosa. These results suggest that CFC-222 may be a promising therapeutic agent in various bacterial infections.


Sign in / Sign up

Export Citation Format

Share Document