scholarly journals INFLUENCE OF AIR TEMPERATURE ON DURATION OF IMPULSE OPENING SPRAY IN THE ENGINE INTAKE MANIFOLD WHILE CAR OPERATION IN VARIOUS CONDITIONS

2019 ◽  
Vol 16 (1) ◽  
pp. 32-39
Author(s):  
B. U. Akunov ◽  
K. Dj. Kasymbekov

Introduction. The air temperature in the intake manifold is used by an electronic engine control unit to adjust the injection time of the fuel injector top. The intake air temperature is variable and depends on the operating conditions of the vehicle. When air intake temperature decreases, the duration of the nozzle opening pulse increases and, conversely, as air intake temperature increases, the duration of thenozzle opening pulse decreases.Materials and methods. The paper demonstrates the analysis of the air temperature effect in the intake manifold of the engine on the duration of the injector opening pulse while the engine is idling and when the vehicle is moving with different speed conditions on the flat,  mountainous and alpine sections of the road.Results. As a result, the research showes that the movement of the car at high speeds on the flat sections of the road leads to a significant decrease of air temperature in the intake manifold and an increase in the duration of the injector opening pulse. Moreover, when the vehicle moves on the mountainous sections of the road, the effect of air temperature in the intake manifold on the nozzle opening impulse duration is insignificant, since the speed of the vehicle movement is influenced by the complexity of the terrain and the parameters of the mountain and high-mountain roads. 

Author(s):  
Fadi Estefanous ◽  
Shenouda Mekhael ◽  
Tamer Badawy ◽  
Naeim Henein ◽  
Akram Zahdeh

With the increasingly stringent emissions and fuel economy standards, there is a need to develop new advanced in-cylinder sensing techniques to optimize the operation of the internal combustion engine. In addition, reducing the number of on-board sensors needed for proper engine monitoring over the lifetime of the vehicle would reduce the cost and complexity of the electronic system. This paper presents a new technique to enable one engine component, the fuel injector, to perform multiple sensing tasks in addition to its primary task of delivering the fuel into the cylinder. The injector is instrumented within an electric circuit to produce a signal indicative of some injection and combustion parameters in electronically controlled spark ignition direct injection (SIDI) engines. The output of the multisensing fuel injector (MSFI) system can be used as a feedback signal to the engine control unit (ECU) for injection timing control and diagnosis of the injection and combustion processes. A comparison between sensing capabilities of the multisensing fuel injector and the spark plug-ion sensor under different engine operating conditions is also included in this study. In addition, the combined use of the ion current signals produced by the MSFI and the spark plug for combustion sensing and control is demonstrated.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 342
Author(s):  
Roberto Finesso ◽  
Omar Marello

A new procedure, based on measurement of intake CO2 concentration and ambient humidity was developed and assessed in this study for different diesel engines in order to evaluate the oxygen concentration in the intake manifold. Steady-state and transient datasets were used for this purpose. The method is very fast to implement since it does not require any tuning procedure and it involves just one engine-related input quantity. Moreover, its accuracy is very high since it was found that the absolute error between the measured and predicted intake O2 levels is in the ±0.15% range. The method was applied to verify the performance of a previously developed NOx model under transient operating conditions. This model had previously been adopted by the authors during the IMPERIUM H2020 EU project to set up a model-based controller for a heavy-duty diesel engine. The performance of the NOx model was evaluated considering two cases in which the intake O2 concentration is either derived from engine-control unit sub-models or from the newly developed method. It was found that a significant improvement in NOx model accuracy is obtained in the latter case, and this allowed the previously developed NOx model to be further validated under transient operating conditions.


2014 ◽  
Vol 42 (1) ◽  
pp. 2-15
Author(s):  
Johannes Gültlinger ◽  
Frank Gauterin ◽  
Christian Brandau ◽  
Jan Schlittenhard ◽  
Burkhard Wies

ABSTRACT The use of studded tires has been a subject of controversy from the time they came into market. While studded tires contribute to traffic safety under severe winter conditions by increasing tire friction on icy roads, they also cause damage to the road surface when running on bare roads. Consequently, one of the main challenges in studded tire development is to reduce road wear while still ensuring a good grip on ice. Therefore, a research project was initiated to gain understanding about the mechanisms and influencing parameters involved in road wear by studded tires. A test method using the institute's internal drum test bench was developed. Furthermore, mechanisms causing road wear by studded tires were derived from basic analytical models. These mechanisms were used to identify the main parameters influencing road wear by studded tires. Using experimental results obtained with the test method developed, the expected influences were verified. Vehicle driving speed and stud mass were found to be major factors influencing road wear. This can be explained by the stud impact as a dominant mechanism. By means of the test method presented, quantified and comparable data for road wear caused by studded tires under controllable conditions can be obtained. The mechanisms allow predicting the influence of tire construction and variable operating conditions on road wear.


Author(s):  
Badal Dev Roy ◽  
R. Saravanan

The Turbocharger is a charge booster for internal combustion engines to ensure best engine performance at all speeds and road conditions especially at the higher load.  Random selection of turbocharger may lead to negative effects like surge and choke in the breathing of the engine. Appropriate selection or match of the turbocharger (Turbomatching) is a tedious task and expensive. But perfect match gives many distinguished advantages and it is a one time task per the engine kind. This study focuses to match the turbocharger to desired engine by simulation and on road test. The objective of work is to find the appropriateness of matching of turbochargers with trim 67 (B60J67), trim 68 (B60J68),  trim 70 (A58N70) and trim 72 (A58N72) for the TATA 497 TCIC -BS III engine. In the road-test (data-logger method) the road routes like highway and slope up were considered for evaluation. The operating conditions with respect various speeds, routes and simulated outputs were compared with the help of compressor map.


Author(s):  
Shaosen Ma ◽  
Guangping Huang ◽  
Khaled Obaia ◽  
Soon Won Moon ◽  
Wei Victor Liu

The objective of this study is to investigate the hysteresis loss of ultra-large off-the-road (OTR) tire rubber compounds based on typical operating conditions at mine sites. Cyclic tensile tests were conducted on tread and sidewall compounds at six strain levels ranging from 10% to 100%, eight strain rates from 10% to 500% s−1 and 14 rubber temperatures from −30°C to 100°C. The test results showed that a large strain level (e.g. 100%) increased the hysteresis loss of tire rubber compounds considerably. Hysteresis loss of tire rubber compounds increased with a rise of strain rates, and the increasing rates became greater at large strain levels (e.g. 100%). Moreover, a rise of rubber temperatures caused a decrease in hysteresis loss; however, the decrease became less significant when the rubber temperatures were above 10°C. Compared with tread compounds, sidewall compounds showed greater hysteresis loss values and more rapid increases in hysteresis loss with the rising strain rate.


2020 ◽  
Vol 1008 ◽  
pp. 128-138
Author(s):  
Ahmed M. Salman ◽  
Ibrahim A. Ibrahim ◽  
Hamada M. Gad ◽  
Tharwat M. Farag

In the present study, the combustion characteristics of LPG gaseous fuel diffusion flame at elevated air temperatures were experimentally investigated. An experimental test rig was manufactured to examine a wide range of operating conditions. The investigated parameters are the air temperatures of 300, 350, 400, 450, and 500 K with constant percentage of nitrogen addition in combustion air stream of 5 % to give low oxygen concentration of 18.3 % by mass at constant air swirl number, air to fuel mass ratio, and thermal load of 1.5, 30, and 23 kW, respectively. The gaseous combustion characteristics were represented as axial and radial temperatures distributions, temperatures gradient, visible flame length and species concentrations. The results indicated that as the air temperature increased, the chemical reaction rate increased and flame volume decreased, the combustion time reduced leading to a reduction in flame length. The NO concentration reaches its maximum values near the location of the maximum centerline axial temperature. Increasing the combustion air temperature by 200 K, the NO consequently O2 concentrations are increased by about % 355 and 20 % respectively, while CO2 and CO concentrations are decreased by about % 21 and 99 % respectively, at the combustor end.


Author(s):  
S M C Soares ◽  
J R Sodre

This paper describes the influence of the atmospheric conditions on the performance of a vehicle. Tests were carried out on the road, under different conditions of ambient temperature, pressure and humidity, measuring the acceleration time. The tested vehicle featured a gasoline-fuelled four-cylinder engine, with variable intake manifold length and multipoint fuel injection. The vehicle was tested at sea level and at an altitude of 827 m above sea level, with the ambient temperature ranging from 20 to 30°C. The times required for the vehicle to go from 80 to 120 km/h, from 40 to 100 km/h and to reach distances of 400 and 1000 m leaving from an initial speed of 40 km/h at full acceleration were recorded. The results showed the vehicle performance to be more affected by changes in the atmospheric pressure than in the temperature. An average difference of 3 per cent in the time to reach 1000 m, leaving from the speed of 40 km/h at full acceleration, was found between the atmospheric pressures tested, for a fixed temperature.


Author(s):  
MARGARYAN V.G. ◽  

The features of the thermal regime of the surface air layer in the Debed river basin are considered. A statistical analysis of the average annual and average seasonal values of air temperature from 1964 to 2018 was carried out, two periods were identified, their time course was shown. The analysis was carried out using data from six meteorological stations representing the lowland, mountain and high-mountain climatic zones of the Debed river basin. A correlation was obtained between the absolute altitude and the monthly average values of air temperature for January and July, which can be used to assess the thermal conditions of unexplored or poorly studied territories and for cartography. The time course of average values of air temperatures for the seasonal period has been studied. Analysis of trend lines of temporal changes in air temperatures shows that in all situations on the territory of the basin as a whole, there is a tendency of temperature growth. Moreover, with a range of interannual fluctuations, a break in the course of temperatures in the early to mid 1990 is clearly visible, after which their significant increase began. It turned out that a significant increase in seasonal temperatures is observed especially over the period 1993-2018, which means that the annual warming after the mid 1990 occurred primarily due to summer and spring seasons. The regular dynamics indicates that in the studied area in terms of temperatures, a tendency of softening winters, a decrease in the water content of rivers, aridization of the climate. The results obtained can be used to assess the regularities of the spatial-temporal distribution of the temperature of the study area, to clarify the thermal balance, for the rational use of heat resources, as well as in the development of strategic programs for longterm analysis.


Author(s):  
Brian Hollon ◽  
Erlendur Steinthorsson ◽  
Adel Mansour ◽  
Vincent McDonell ◽  
Howard Lee

This paper discusses the development and testing of a full-scale micro-mixing lean-premix injector for hydrogen and syngas fuels that demonstrated ultra-low emissions and stable operation without flashback for high-hydrogen fuels at representative full-scale operating conditions. The injector was fabricated using Macrolamination technology, which is a process by which injectors are manufactured from bonded layers. The injector utilizes sixteen micro-mixing cups for effective and rapid mixing of fuel and air in a compact package. The full scale injector is rated at 1.3 MWth when operating on natural gas at 12.4 bar (180 psi) combustor pressure. The injector operated without flash back on fuel mixtures ranging from 100% natural gas to 100% hydrogen and emissions were shown to be insensitive to operating pressure. Ultra-low NOx emissions of 3 ppm were achieved at a flame temperature of 1750 K (2690 °F) using a fuel mixture containing 50% hydrogen and 50% natural gas by volume with 40% nitrogen dilution added to the fuel stream. NOx emissions of 1.5 ppm were demonstrated at a flame temperature over 1680 K (2564 °F) using the same fuel mixture with only 10% nitrogen dilution, and NOx emissions of 3.5 ppm were demonstrated at a flame temperature of 1730 K (2650 °F) with only 10% carbon dioxide dilution. Finally, using 100% hydrogen with 30% carbon dioxide dilution, 3.6 ppm NOx emissions were demonstrated at a flame temperature over 1600 K (2420 °F). Superior operability was achieved with the injector operating at temperatures below 1470 K (2186 °F) on a fuel mixture containing 87% hydrogen and 13% natural gas. The tests validated the micro-mixing fuel injector technology and the injectors show great promise for use in future gas turbine engines operating on hydrogen, syngas or other fuel mixtures of various compositions.


Sign in / Sign up

Export Citation Format

Share Document