scholarly journals MECHANICAL STRENGHT’S RESEARCH OF THE THERMAL POWER STATION’S SLAG

2019 ◽  
Vol 16 (6) ◽  
pp. 746-757
Author(s):  
A. A. Lunev

Introduction. The use of the thermal power station’s (TPS) waste in the construction industry becomes the norm in world practice of recent decades. Basically, the researches use ash and slag in the construction of automobile roads as a material for filling the subgrade or in the form of a cement-bound material in industrial and civil construction as a material for planning work, when filling inconveniences and quarries. However, the potential of the ash and slag’s usage is much wider. Coarse-grained slag deposits that form in the zone of slag erosion have a greater potential for application than other ash and slag mixtures, however, these mixtures have been less studied by both domestic and foreign researchers. The paper discusses the use of the boiler slag formed at power plants with boilers involving liquid slag removal for the construction of road pavement bases with the position of its mechanical properties.Materials and methods. The author studied samples of boiler slag from Novosibirsk TPS-2, operating (Kuznetsk coal basin) and Novosibirsk TPS-3 (Kansko-Achinsk coal basin). Moreover, the author determined the crushing losses of individual fractions of the investigated materials in a dry and water-saturated state. The author determined the modulus of deformation of boiler slag.Results. The researcher found the difference in mechanical strength of the different genesis material. The crushing values of the investigated materials are determined.The author estimated the graphs obtained during testing and calculated the deformability characteristics of the material.Discussion and conclusions. The author determines possible directions of the studied materials’ usage in the road construction.The author has read and approved the final manuscript. Financial transparency: the author has no financial interest in the presented materials or methods. There is no conflict of interest.

Vestnik MGSU ◽  
2020 ◽  
pp. 968-979
Author(s):  
Aleksandr A. Lunev

Introduction. Production waste is used in the construction industry worldwide as it helps to cover a considerable portion of the industry’s demand for building materials. Coarse-grained slag deposits (slag crushed stone and sand), formed in the slag washout zone, have more potential for application than other ash and slag mixtures (coarse ASM), but they need more research. Mechanical properties of the slag crushed stone (coarse-grained ASM), formed in the course of coal combustion at Kansk-Achinsk, Kuznetsk coal deposits (in boilers equipped with liquid and dry slag removal facilities) and the application of the slag crushed stone in roadbuilding are considered. Materials and methods. In the course of the research, the crushability and the deformation modulus of particular fractions of slag crushed stone samples (in dry and water-saturated conditions) taken from the dumps of Novosibirsk TPP-3 (that consumes the coal of the Kansk-Achinsk coal mining field) and from Novosibirsk TPP-2 and Seversk TPP (that consume the coal of the Kuznetsk coal mining field) were identified. To assess the factors influencing the mechanical strength of the slag crushed stone, ignition losses, the content of flaky and acicular particles, dust and clay particles and clay lumps was made. Results. The difference in the mechanical strength of samples having different genesis was identified. The graphs obtained in the course of testing were assessed and deformability characteristics were calculated (for materials having different fineness values). The factors influencing the mechanical strength of slag crushed stone were determined. Dependencies between deformation parameters and crushability of the slag crushed stone were obtained. Conclusions. Some mechanical and physical parameters of the slag crushed stone were identified; they were applied to outline potential areas of the slag crushed stone application in road building. The mathematical relationship needed to project the deformation modulus of the slag crushed stone was identified. This relationship will be used to design structures to be made of this material.


2021 ◽  
Vol 2021 ◽  
pp. 86-93
Author(s):  
Anatolii Mudrychenko ◽  
◽  
Andrii Hrinchuk ◽  
Ivan Balashov ◽  
Sergey Illyasch ◽  
...  

Introduction. Growing volumes of road construction increase the need to expand and rationally use of raw materials. The need for stone materials can be solved through the wide spread using of local materials, recycled products of industry in the pavement base courses and decreasing the use of natural construction materials by replacing them with alternatives, including soils, slag materials that are metallurgical industry wastes. Experience of ferrous metallurgy slag usage has been accumulated in the road industry of Ukraine. Their usage makes it possible to extend the construction season, increases the strength and reliability of road structures due to their physical and mechanical properties, significantly reduces the road pavement energy consumption, simplifying the technology of works and the estimated cost of road construction. It was determined that the layers of pavement made from blast furnace slag have a high bearing capacity. Slag structures in 5–10 years of hardening are not inferior to, and in 10–20 years surpass cement structures on durability and deformation resistance. However, there is an urgent need to provide strength and open road traffic on the already built road section in a shortest possible term, so there is a need to accelerate the activation of the slow-setting binder. Therefore water glass (water solution of sodium silicate) is used.Purpose. The purpose of the work is to study the feasibility of using the soils and recycled industry products treated with water glass in the road pavement base courses.Materials and methods. Experimental tests of soils and blast furnace slags treated with water glass with different content of water solution of sodium silicate were performed.Results. The feasibility of using the asphalt concrete mixtures on the basis of soils and recycled products of industry treated with water glass in the pavement base courses is determined. Recommendations regarding technological parameters of preparation, transportation, laying and compaction of such mixes are given.Conclusions. Performed studies have shown that the physical and mechanical parameters of soils and blast furnace slags treated with water glass meet the requirements of current regulations of Ukraine. The advantages of use are noted, namely: the possibility of replacement of traditional stone materials by the local materials and recycled products of industry, reducing the transport component in the cost of construction. The obtained results indicate the feasibility of using the soils and recycled products of industry treated with water glass in the road construction.Keywords: soils, recycled products of industry, graded blast furnace slag, water solution of sodium silicate, water glass


2020 ◽  
Vol 10 (14) ◽  
pp. 4883
Author(s):  
Junji Sakamoto ◽  
Naoya Tada ◽  
Takeshi Uemori ◽  
Hayato Kuniyasu

Turbine blades for thermal power plants are exposed to severe environments, making it necessary to ensure safety against damage, such as crack formation. A previous method detected internal cracks by applying a small load to a target member. Changes in the surface properties of the material were detected before and after the load using a digital holographic microscope and a digital height correlation method. In this study, this technique was applied in combination with finite element analysis using a 2D and 3D model simulating the turbine blades. Analysis clarified that the change in the surface properties under a small load varied according to the presence or absence of a crack, and elucidated the strain distribution that caused the difference in the change. In addition, analyses of the 2D model considering the material anisotropy and thermal barrier coating were conducted. The difference in the change in the surface properties and strain distribution according to the presence or absence of cracks was elucidated. The difference in the change in the top surface height distribution of the materials with and without a crack was directly proportional to the crack length. As the value was large with respect to the vertical resolution of 0.2 nm of the digital holographic microscope, the change could be detected by the microscope.


2014 ◽  
Vol 1065-1069 ◽  
pp. 3410-3413
Author(s):  
Dun Nan Liu ◽  
Yan Zhao ◽  
Lei Li ◽  
Rui Zhi Liu ◽  
Yu Jie Xu

With the implementation of energy-conservation power generation dispatching, power grid will lose some peak regulation capacity, and changes of load demand characteristic will further increase the difference between peak and valley load of power grid, especially in the Shanghai grid, primarily thermal power units. Its peak regulation capacity will be obviously insufficient, and the problem will become increasingly prominent. This presents a new topic for Shanghai power grid in the power generation market: Under the premise of meeting the customers’ need, how to provide a fair competitive environment that encourage power plants to participate in power peak regulation actively, and then lead the grid to safe, high quality and fairly competitive virtuous cycle.


Author(s):  
V. N. Efimenko ◽  
Yu. M. Charykov

The paper presents of research results on the development of the raw material base due to the use of clay soils widespread in the territory of Russia. The structure and properties of soils are processed by the nonconventional electrothermal technology. The flow chart is proposed for the rock material production. The data on energy consumption is suggested herein for the use of artificial rock materials in the road pavement engineering.


2019 ◽  
Vol 5 (3) ◽  
pp. 97
Author(s):  
Nurul Fauziah Endah Ningtyas ◽  
Samun Haris

ABSTRAKJalan sebagai sarana penunjang transportasi darat memiliki peran penting untuk memenuhi kebutuhan manusia. Salah satu material penting dalam pembuatan jalan adalah agregat. Sifat fisik agregat menjadi salah satu faktor penentu tebal lapisan struktur perkerasan. Ruas jalan Sofi–Wayabula adalah ruas jalan nasional strategis di Pulau Morotai dengan menggunakan perkerasan lentur. Agregat yang digunakan untuk lapis fondasi bawah pada ruas jalan ini adalah kombinasi agregat Eks. Palu dengan agregat Eks. Morotai. Tujuan dari penelitian ini adalah untuk menganalisis tebal lapis fondasi bawah berdasarkan koefisien kekuatan relatif ( ) yang didapat dari nilai CBR kombinasi agregat Eks. Palu dengan agregat Eks. Morotai dan agregat Eks. Palu pada struktur perkerasan lentur. Dari hasil perhitungan metode Manual Perkerasan Jalan 2017 didapatkan tebal lapis fondasi bawah sebesar 15 cm, bernilai sama, baik menggunakan kombinasi agregat Eks. Palu dengan agregat Eks. Morotai, maupun agregat Eks. Palu. Sedangkan, dengan menggunakan Pedoman Perkerasan Jalan Lentur 2011 didapat tebal lapis fondasi bawah sebesar 15,054 cm untuk kombinasi agregat Eks. Palu dengan agregat Eks. Morotai dan 14,608 cm untuk agregat Eks. Palu.Kata Kunci: perkerasan lentur, koefisien kekuatan relatif, lapis fondasi bawah. ABSTRACTRoads as a means of supporting land transportation have an important role to meet human needs. One of important material in road construction is aggregate. The aggregate physical properties become one of the determinants of the pavement thickness structure layer. The road segment of Sofi-Wayabula is a strategic national road in Morotai Island by using flexible pavement. The aggregate used for the sub-base course of the road is combination of aggregate Ex. Palu with Ex. Morotai aggregate. The purpose of this research is to analyze the thickness of the sub-base course based on relative strength coefficient  (a3) obtained from the value of CBR combination of aggregate Ex. Palu with Ex. Morotai aggregate and aggregate Ex. Palu on flexible pavement structures. From the calculation results of the Pavement Road Manual method 2017, the thick of sub-base course is 15 cm, have equal value using the combination of Ex. Palu aggregate with Ex. Morotai aggregate or the Ex.Palu aggregate. Meanwhile, by using Flexible Road Pavement Guideline 2011 the thickness of the sub-base course is 15,054 cm for combination of Ex.Palu aggregate with Ex. Morotai aggregate and 14,608 cm for Ex.Palu.Keywords: flexible pavement, relative strength coefficient, sub-base course.


2019 ◽  
pp. 57-66
Author(s):  
Yunhui Zeng ◽  
Wenjuan Hu ◽  
Hongfei Guo ◽  
Shiyue Shen ◽  
Li Huang ◽  
...  

Focused on the lane occupancy phenomenon, this paper analyzes the roads during two different accidents to the evacuation period. Firstly, according to the statistical data, this paper calculated the correction coefficients under the road traffic condition, and then obtained the actual traffic capacity result at each moment of the road when combining the function model of the actual traffic capacity corrected by the running speed and the road traffic condition. Next the actual traffic capacity results are fitted to the Smooth spline interpolation, and then the actual traffic capacity is further verified by the traffic congestion situation. The actual traffic capacity of the road during the accident to evacuation is summarized as follows: the actual traffic capacity shows a nonlinear trend, that is, ascending-attenuating-recovering and gradually stabilizing. Finally, using Mann-Whitney U test to carry out the difference test on the actual traffic capacity, it is found that there is significant difference between the two groups of data, and the actual traffic capacity of the second case is stronger than that of the first one, and the reasons for the difference are analyzed as follows: the ratio of the steering traffic volume at the downstream intersection is different; this road section includes the community intersection and there are vehicles entering and leaving; meanwhile the speed of each lane is different and there are buildings near the lane. The above conclusions will provide theoretical basis for the traffic management department to correctly guide the vehicle driving, approve the road construction, design the road channelization plan, set the roadside parking space and the non-port-type bus stations.


2019 ◽  
Vol 9 (2) ◽  
pp. 38-48
Author(s):  
Laura Eboli ◽  
Gabriella Mazzulla ◽  
Giuseppe Pungillo

Acceleration of a vehicle is composed of three components: longitudinal, lateral, and vertical acceleration. Longitudinal and lateral accelerations have been frequently considered as components for investigating driving behaviour, with the aim of improving road safety. But in particular situations during the motion of the vehicle, also vertical acceleration is relevant. In this paper, the authors want to demonstrate that vertical acceleration is also a relevant parameter to be considered in terms of road safety. The authors focus on the difference registered by considering only lateral and longitudinal acceleration and by considering also vertical acceleration in the analysis of driving behaviour through real tests on the road. All the parameters were registered through a global positioning system (GPS) device and a tri-axial accelerometer, which allow the geo-referenced kinematic parameters of the vehicle to be detected. For this purpose, over 110 tests covering about 600 kilometers were completed. All the experimental surveys were conducted in a good weather condition, under dry road pavement conditions, on weekdays, during day time and out-of-peak hours, in order to have no influence from the traffic flow. Each path was repeatedly run by the driver in order to collect the instantaneous speed and acceleration along the pattern. During the tests, about 40,000 instantaneous values of vehicle position have been registered. The survey interested a segment of the Italian National road n.107 (S.S. 107), in Southern Italy. The authors found that by considering vertical together with longitudinal and lateral accelerations, a higher number of unsafe driving conditions can be identified. More specifically, the proposed methodology allows 20% extra of dangerous driving conditions to be registered. For this reason, the authors retain that also vertical acceleration should be considered in the definition of the safety domain, because it determines the intensity of the exchange forces between the tires and road pavement, and in some cases, it leads to a loss of friction. Definitively, the authors retain that vertical acceleration is not only useful as indicator of comfort on board, but it has an important role also in terms of road safety.


2020 ◽  
Vol 15 (5) ◽  
pp. 118-135
Author(s):  
Arturs Riekstins ◽  
Viktors Haritonovs ◽  
Verners Straupe

With limited funding and a desire to reduce environmental impact, there is a lot of pressure on road Authorities to develop decision making policy to manage better, build and maintain the road network sustainability. One of the solutions is to use various life cycle analyses. Numerous tools are available for different analyses, but they usually evaluate the construction from one perspective (economical, environmental, or social). Therefore, it was decided to develop a tool, which combines economic (Life Cycle Cost Analysis) and environmental (Life Cycle Assessment) analyses. The given study presents the methodology of the self-developed calculation program, which compare full-depth road constructions. Paper also shows shortcomings when calculation does not include all life cycle processes. In this study, five different road pavement constructions and reconstruction plans were compared. The difference between these pavements was in the layer thickness, recycled asphalt content in asphalt layers and the use of cement or fly ash in the road base layers. The results showed that the full depth reclamation technology in comparison to the full-depth removal and replacement reduce emissions by 60% and costs by 50%.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3708
Author(s):  
Sajid Hussain ◽  
Xuemei Zhou ◽  
Syyed Adnan Raheel Shah ◽  
Naveed Ahmad ◽  
Muhammad Kashif Anwar ◽  
...  

Road safety has become a serious issue in both developed and developing countries, costing billions of dollars every year. Road accidents at nighttime especially in low illumination situations are common and severe and have gained a lot of attention. To improve visibility and avoid traffic accidents, a series of efforts have been made but the existing mechanism is facing continuous challenges and highlighting a need for smart highways with high efficiency, road safety, and strength. In this study, the use of radium polymer beads (RPB) is proposed to avoid road accidents. The effect of RPB was investigated by comparing the results of the beads’ surface and modified asphalt mixtures using the three-stage testing methodology. Utilizing the circular economy, RPB have been introduced as a solution to the problem. Results indicated that in the first phase, the addition of RPB on the mixture surface improved the mechanical performance of the road pavement and helped in avoiding road accidents due to their ability to absorb the light from the source and then reflect in the night. Moreover, the mechanical properties using Marshall stability standard parameters (stability 9 kN and flow 2–4 mm range) were fulfilled as a standard testing requirement. The proposed radium bead layer can reduce road accidents and provide a direction towards future smart highways by using new reflective materials in road construction.


Sign in / Sign up

Export Citation Format

Share Document