scholarly journals Method of cryptologic data transformations

Countering a quantum computer in the process of illegal ultra-high-speed decryption of messages is technically feasible. Information owner must oppose the competitor's computer with tasks, the solution of which requires an infinite number of operations during decryption. For example, the dependence of functions on an infinite number of informative features. The owner encrypts by integrating the functions, the recipient decrypts by solving the integral equations. It is not a discrete but an analog approach that prevails here. The basis for the implementation of this approach was created by Polish scientists. Mathematician Stefan Banach (1892-1945), who created modern functional analysis, and Marian Mazur (1909-1983), the author of " The Qualitative Theory of Information". Their theory was created in contrast with the "Quantitative Information Theory". Cryptologists who have devoted their whole lives to improving the "discrete" theory and found themselves close to power (and finance), try not to recall that Claude Shannon in his basic work "Communication Theory of Secrecy Systems" more than once emphasized the discrete focus of his developments anticipating future research on the specific limitations of his work adapted to the communication theory. Forgetting about the unlimited speeds and amounts of memory of quantum computers the orthodox talk about redundancy and further purely technical issues, including administrative leverages for counteracting against opponents. It is impossible to stop the progress of science. Experiments have shown the reality of creating such post-quantum-level cryptographic systems.

2020 ◽  
Vol 15 ◽  
Author(s):  
Fei Sun ◽  
Guohe Li ◽  
Qi Zhang ◽  
Meng Liu

: Cr12MoV hardened steel is widely used in the manufacturing of stamping die because of its high strength, high hardness, and good wear resistance. As a kind of mainstream cutting technology, high-speed machining has been applied in the machining of Cr12MoV hardened steel. Based on the review of a large number of literature, the development of high-speed machining of Cr12MoV hardened steel was summarized, including the research status of the saw-tooth chip, cutting force, cutting temperature, tool wear, machined surface quality, and parameters optimization. The problems that exist in the current research were discussed and the directions of future research were pointed out. It can promote the development of high-speed machining of Cr12MoV hardened steel.


Author(s):  
Xiaodong Yu ◽  
Yu Wang ◽  
Junfeng Wang ◽  
Wenkai Zhou ◽  
Hongwei Bi ◽  
...  

Background: Hydrostatic bearings have the advantages of strong bearing capacity, good stability, small friction coefficient and long life. The performance of liquid hydrostatic bearings directly affect the accuracy and efficiency of CNC machining equipment. The performance is conducive to the development of CNC machine tools towards high speed and heavy load, so it is necessary to sort out and summarize the existing research results. Objective: This study summarizes the current development status of hydrostatic bearings and explains the development trend of hydrostatic bearings. Methods: According to the recently published journal articles and patents, the recent experimental research on hydrostatic thrust bearings is summarized. This paper summarizes many factors that affect the performance of hydrostatic bearings, and discusses the causes of various factors on hydrostatic bearings. Finally, future research on hydrostatic bearings is presented. Results: The study discusses experimental methods, simulation processes, and experimental results. Conclusion: This study can produce dynamic and static pressure effects by changing the structure of the oil cavity of the hydrostatic bearing. This effect can make up for the static pressure loss. By improving the theoretical formula and mathematical model and proposing a new simulation method, the accuracy of the hydrostatic bearing simulation is satisfied; the future development trend of the hydrostatic bearing is proposed.


2001 ◽  
Vol 80 (3-4) ◽  
pp. 315-321 ◽  
Author(s):  
J.F. Cadorin ◽  
D. Jongmans ◽  
A. Plumier ◽  
T. Camelbeeck ◽  
S. Delaby ◽  
...  

AbstractTo provide quantitative information on the ground acceleration necessary to break speleothems, laboratory measurements on samples of stalagmite have been performed to study their failure in bending. Due to their high natural frequencies, speleothems can be considered as rigid bodies to seismic strong ground motion. Using this simple hypothesis and the determined mechanical properties (a minimum value of 0.4 MPa for the tensile failure stress has been considered), modelling indicates that horizontal acceleration ranging from 0.3 m/s2 to 100 m/s2 (0.03 to 10g) are necessary to break 35 broken speleothems of the Hotton cave for which the geometrical parameters have been determined. Thus, at the present time, a strong discrepancy exists between the peak accelerations observed during earthquakes and most of the calculated values necessary to break speleothems. One of the future research efforts will be to understand the reasons of the defined behaviour. It appears fundamental to perform measurements on in situ speleothems.


Author(s):  
Honghui Li ◽  
Hongkun Wang ◽  
Ziwen Xie ◽  
Mengqi He

As the key running part of the railway freight transportation system, the wheel not only bears the load of the vehicle, but also ensures the running and steering of the car body on the rails. The frequent high-speed friction with the rail and brake is the main reason for early failure of wheelset tread. Therefore, real-time status monitoring and early fault diagnosis of wheel treads have become key technical issues that must be solved in the reform of the railway freight maintenance system. In this paper, an adaptive hybrid Simulated Annealing Cuckoo Search algorithm (SA-ACS) is proposed and applied to the Deep Belief Network (DBN). The SA-ACS-DBN algorithm is used to improve the training speed and convergence accuracy of the diagnosis model. Finally, it is found through the comparison experiment of wheel tread fault data that the data results prove the feasibility of the SA-ACS-DBN model in the application of wheelset fault diagnosis.


Author(s):  
Ivan Mozghovyi ◽  
Anatoliy Sergiyenko ◽  
Roman Yershov

Increasing requirements for data transfer and storage is one of the crucial questions now. There are several ways of high-speed data transmission, but they meet limited requirements applied to their narrowly focused specific target. The data compression approach gives the solution to the problems of high-speed transfer and low-volume data storage. This paper is devoted to the compression of GIF images, using a modified LZW algorithm with a tree-based dictionary. It has led to a decrease in lookup time and an increase in the speed of data compression, and in turn, allows developing the method of constructing a hardware compression accelerator during the future research.


2019 ◽  
Vol 16 (1) ◽  
pp. 148-160
Author(s):  
Olga Piterina ◽  
Alexander Masharsky

Abstract Research purpose. The high-speed railway (HSR) construction project in the Baltic States is the largest joint infrastructure project since the restoration of independence of Latvia, Lithuania and Estonia. Rail Baltica (RB) is considered as the most energy-efficient project having the lowest environmental impact. However, the issue of energy consumption of the project was not sufficiently addressed either in the investment justification of the RB construction or in the relevant research works regarding the project. The aim of the current research is to determine the indicators of energy consumption and carbon dioxide (CO2) emissions intensity of the Latvian section of RB, since they are the key factors of the quantitative assessment of sustainability. Design/Methodology/Approach. Critical analysis of the academic research works and reports of the official international organizations dedicated to the topic of energy consumption and CO2 emissions of HSR was conducted prior to the calculation of the above-mentioned indicators. The method of calculation based on International Union of Railways (UIC) was used in order to conduct the cluster analysis within the framework of current work. The main points considered are electricity consumption, carbon dioxide emissions, and level of passenger and freight demand. Statistical databases of UIC and International Energy Agency were used. Findings. The calculations carried out by the authors of the given article demonstrate substantial figures of CO2 emissions intensity for Latvian section of the project related to the train load rate and traffic intensity which is evened out only by the CO2 emissions factor in Latvia. Originality/Value/Practical implications. On this basis the authors present the directions for future research required for the development of the effective strategy for the Latvian Republic with the aim of achieving the increase in the RB project’s ecological efficiency.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 26
Author(s):  
Ramraj Dangi ◽  
Praveen Lalwani ◽  
Gaurav Choudhary ◽  
Ilsun You ◽  
Giovanni Pau

In wireless communication, Fifth Generation (5G) Technology is a recent generation of mobile networks. In this paper, evaluations in the field of mobile communication technology are presented. In each evolution, multiple challenges were faced that were captured with the help of next-generation mobile networks. Among all the previously existing mobile networks, 5G provides a high-speed internet facility, anytime, anywhere, for everyone. 5G is slightly different due to its novel features such as interconnecting people, controlling devices, objects, and machines. 5G mobile system will bring diverse levels of performance and capability, which will serve as new user experiences and connect new enterprises. Therefore, it is essential to know where the enterprise can utilize the benefits of 5G. In this research article, it was observed that extensive research and analysis unfolds different aspects, namely, millimeter wave (mmWave), massive multiple-input and multiple-output (Massive-MIMO), small cell, mobile edge computing (MEC), beamforming, different antenna technology, etc. This article’s main aim is to highlight some of the most recent enhancements made towards the 5G mobile system and discuss its future research objectives.


Author(s):  
Lilian Rata ◽  
Nina Birnaz ◽  
Butnari Nadejda

This chapter applies an ecological approach to learning and communication to analyze the impact of rhetoric communication on oratory competence. In the introductory section, it is analyzed the evolution and future trends of rhetoric and oratory as well as the importance of planning and management the university didactical processes from the perspectives of ecosphere, ecosystem, ecology, rhetoric situation, etc. It is pointed that in our current, globalized world, university education serves as the focal focus on verbal communication. The university education cannot escape from the pressure of their global and local environment. In the background, the authors analyze the evolution of rhetoric in accordance with general system theory and communication theory. The focus of the chapter is devoted to the development of the oratory competence. A novel model of rhetoric communication is described in detail. The chapter finishes with conclusions and future research regarding the applicability of the proposed model.


Author(s):  
Kenneth L. Clark ◽  
Robert O. Lawton

Because biological diversity is directly related to diversity of the physical environment, a clear picture of the physical setting of the Cordillera is crucial to understand its ecology and conservation. The physical setting of Monteverde and the Cordillera de Tilarán encompasses a wide range of environmental conditions. The size, position across the trade windflow, geology, erosional dissection, and hydrology of the Cordillera interact to produce extraordinary physical diversity that parallels its great biological diversity. A major difference between tropical montane and lowland regions is the way biological diversity is distributed across the landscape. Montane regions are usually less diverse at the scale of 0.01-0.1 km2 but are as rich in species as nearby lowland areas at scales of 10-100 km2. We have two goals in this chapter. First, we review what is known of the climate and weather, geology and geologic history, geomorphology, soils, and hydrology of Monteverde. Our account focuses on higher elevations in Monteverde and wetter areas on the Caribbean slope, with less attention to the drier environments on the lower Pacific slope. Second, we point out areas where our knowledge is incomplete and suggest promising lines of future research. Although the geology and geomorphology of Monteverde are moderately well known, our knowledge of the rates of many geomorphic processes, particularly erosion, is poor. We also lack information on soils and hydrology, particularly of wind-driven cloud and precipitation inputs, evapotranspiration, and stream outputs from forests and other land-use types in Monteverde. Quantitative information on how variability in the physical environment interacts with biotic processes at the population, community, and ecosystem levels is scant. Most of the climate and weather data were collected at 1450 m at the Pensiόn (1956-1971), at 1520 m at John Campbell's residence (1972 to present), and intermittently throughout or near the Monteverde Cloud Forest Preserve (MCFP; Lawton and Dryer 1980, Crump et al. 1992, Clark 1994, Bohlman et al. 1995, W. Calvert and A. Nelson, unpubl. data).


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 44 ◽  
Author(s):  
Chuangnan Wang ◽  
Thomas Connolley ◽  
Iakovos Tzanakis ◽  
Dmitry Eskin ◽  
Jiawei Mi

Quantitative understanding of the interactions of ultrasonic waves with liquid and solidifying metals is essential for developing optimal processing strategies for ultrasound processing of metal alloys in the solidification processes. In this research, we used the synchrotron X-ray high-speed imaging facility at Beamline I12 of the Diamond Light Source, UK to study the dynamics of ultrasonic bubbles in a liquid Sn-30wt%Cu alloy. A new method based on the X-ray attenuation for a white X-ray beam was developed to extract quantitative information about the bubble clouds in the chaotic and quasi-static cavitation regions. Statistical analyses were made on the bubble size distribution, and velocity distribution. Such rich statistical data provide more quantitative information about the characteristics of ultrasonic bubble clouds and cavitation in opaque, high-temperature liquid metals.


Sign in / Sign up

Export Citation Format

Share Document