scholarly journals The influence of the gut microbiota on influenza vaccine-induced immunity

2021 ◽  
Author(s):  
◽  
Anna Mooney

<p>Currently, annual vaccination is widely considered the most effective method for preventing and controlling influenza virus infection. However, many individuals mount suboptimal immune responses to vaccination and the factors leading to poor immune responses are yet to be elucidated. Interestingly, it has been proposed that microorganisms that inhabit the intestinal tract, the gut microbiota, can profoundly influence many facets of the host immune system, including the strength of the immune response to influenza vaccination.  In line with these observations, we observed that short-term administration of antibiotics drastically reduced influenza vaccine-specific antibody production. In particular, antibiotic treatment diminished the frequency and activation status of multiple myeloid cell subsets in the draining lymph nodes at steady-state and following vaccination, with associated impairments in B and TFH cell responses.  Composition and function of gut microbiota communities can be rapidly altered through dietary changes. Therefore, the impact of potential prebiotic and probiotic nutritional interventions on the immune response to influenza vaccination and subsequent infection was assessed. No improvement in antibody responses to influenza vaccination was observed following the nutritional interventions studies. However, oral administration of a propolis formulation led to some improvement in viral control following infection.  Collectively, this investigation indicates that alterations in microbial-associated signals leads to severe impairments in cellular responses crucial to humoral immunity and subsequent vaccine-induced antibody production. Furthermore, by altering the gut microbiota through dietary interventions, there is potential to improve immune responses to vaccination.</p>

2021 ◽  
Author(s):  
◽  
Anna Mooney

<p>Currently, annual vaccination is widely considered the most effective method for preventing and controlling influenza virus infection. However, many individuals mount suboptimal immune responses to vaccination and the factors leading to poor immune responses are yet to be elucidated. Interestingly, it has been proposed that microorganisms that inhabit the intestinal tract, the gut microbiota, can profoundly influence many facets of the host immune system, including the strength of the immune response to influenza vaccination.  In line with these observations, we observed that short-term administration of antibiotics drastically reduced influenza vaccine-specific antibody production. In particular, antibiotic treatment diminished the frequency and activation status of multiple myeloid cell subsets in the draining lymph nodes at steady-state and following vaccination, with associated impairments in B and TFH cell responses.  Composition and function of gut microbiota communities can be rapidly altered through dietary changes. Therefore, the impact of potential prebiotic and probiotic nutritional interventions on the immune response to influenza vaccination and subsequent infection was assessed. No improvement in antibody responses to influenza vaccination was observed following the nutritional interventions studies. However, oral administration of a propolis formulation led to some improvement in viral control following infection.  Collectively, this investigation indicates that alterations in microbial-associated signals leads to severe impairments in cellular responses crucial to humoral immunity and subsequent vaccine-induced antibody production. Furthermore, by altering the gut microbiota through dietary interventions, there is potential to improve immune responses to vaccination.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kelly Huang ◽  
Shu-Wen Lin ◽  
Wang-Huei Sheng ◽  
Chi-Chuan Wang

AbstractThe coronavirus disease of 2019 (COVID-19) has caused a global pandemic and led to nearly three million deaths globally. As of April 2021, there are still many countries that do not have COVID-19 vaccines. Before the COVID-19 vaccines were developed, some evidence suggested that an influenza vaccine may stimulate nonspecific immune responses that reduce the risk of COVID-19 infection or the severity of COVID-19 illness after infection. This study evaluated the association between influenza vaccination and the risk of COVID-19 infection. We conducted a retrospective cross-sectional study with data from July 1, 2019, to June 30, 2020 with the Claims data from Symphony Health database. The study population was adults age 65 years old or older who received influenza vaccination between September 1 and December 31 of 2019. The main outcomes and measures were odds of COVID-19 infection and severe COVID-19 illness after January 15, 2020. We found the adjusted odds ratio (aOR) of COVID-19 infection risk between the influenza-vaccination group and no-influenza-vaccination group was 0.76 (95% confidence interval (CI), 0.75–0.77). Among COVID-19 patients, the aOR of developing severe COVID-19 illness was 0.72 (95% CI, 0.68–0.76) between the influenza-vaccination group and the no-influenza-vaccination group. When the influenza-vaccination group and the other-vaccination group were compared, the aOR of COVID-19 infection was 0.95 (95% CI, 0.93–0.97), and the aOR of developing a severe COVID-19 illness was 0.95 (95% CI, 0.80–1.13). The influenza vaccine may marginally protect people from COVID-19 infection.


2019 ◽  
Vol 25 (37) ◽  
pp. 4946-4967 ◽  
Author(s):  
Anna K. Kiss ◽  
Jakub P. Piwowarski

The popularity of food products and medicinal plant materials containing hydrolysable tannins (HT) is nowadays rapidly increasing. Among various health effects attributable to the products of plant origin rich in gallotannins and/or ellagitannins the most often underlined is the beneficial influence on diseases possessing inflammatory background. Results of clinical, interventional and animal in vivo studies clearly indicate the antiinflammatory potential of HT-containing products, as well as pure ellagitannins and gallotannins. In recent years a great emphasis has been put on the consideration of metabolism and bioavailability of natural products during examination of their biological effects. Conducted in vivo and in vitro studies of polyphenols metabolism put a new light on this issue and indicate the gut microbiota to play a crucial role in the health effects following their oral administration. The aim of the review is to summarize the knowledge about HT-containing products’ phytochemistry and their anti-inflammatory effects together with discussion of the data about observed biological activities with regards to the current concepts on the HTs’ bioavailability and metabolism. Orally administered HT-containing products due to the limited bioavailability of ellagitannins and gallotannins can influence immune response at the level of gastrointestinal tract as well as express modulating effects on the gut microbiota composition. However, due to the chemical changes being a result of their transit through gastrointestinal tract, comprising of hydrolysis and gut microbiota metabolism, the activity of produced metabolites has to be taken into consideration. Studies regarding biological effects of the HTs’ metabolites, in particular urolithins, indicate their strong and structure-dependent anti-inflammatory activities, being observed at the concentrations, which fit the range of their established bioavailability. The impact of HTs on inflammatory processes has been well established on various in vivo and in vitro models, while influence of microbiota metabolites on silencing the immune response gives a new perspective on understanding anti-inflammatory effects attributed to HT containing products, especially their postulated effectiveness in inflammatory bowel diseases (IBD) and cardiovascular diseases.


Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 629
Author(s):  
Megan M. Dunagan ◽  
Kala Hardy ◽  
Toru Takimoto

Influenza A virus (IAV) is a significant human pathogen that causes seasonal epidemics. Although various types of vaccines are available, IAVs still circulate among human populations, possibly due to their ability to circumvent host immune responses. IAV expresses two host shutoff proteins, PA-X and NS1, which antagonize the host innate immune response. By transcriptomic analysis, we previously showed that PA-X is a major contributor for general shutoff, while shutoff active NS1 specifically inhibits the expression of host cytokines, MHC molecules, and genes involved in innate immunity in cultured human cells. So far, the impact of these shutoff proteins in the acquired immune response in vivo has not been determined in detail. In this study, we analyzed the effects of PA-X and NS1 shutoff activities on immune response using recombinant influenza A/California/04/2009 viruses containing mutations affecting the expression of shutoff active PA-X and NS1 in a mouse model. Our data indicate that the virus without shutoff activities induced the strongest T and B cell responses. Both PA-X and NS1 reduced host immune responses, but shutoff active NS1 most effectively suppressed lymphocyte migration to the lungs, antibody production, and the generation of IAV specific CD4+ and CD8+ T cells. NS1 also prevented the generation of protective immunity against a heterologous virus challenge. These data indicate that shutoff active NS1 plays a major role in suppressing host immune responses against IAV infection.


Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1590 ◽  
Author(s):  
Nina Hansen ◽  
Anette Sams

This review provides evidence that not only the content of nutrients but indeed the structural organization of nutrients is a major determinant of human health. The gut microbiota provides nutrients for the host by digesting food structures otherwise indigestible by human enzymes, thereby simultaneously harvesting energy and delivering nutrients and metabolites for the nutritional and biological benefit of the host. Microbiota-derived nutrients, metabolites, and antigens promote the development and function of the host immune system both directly by activating cells of the adaptive and innate immune system and indirectly by sustaining release of monosaccharides, stimulating intestinal receptors and secreting gut hormones. Multiple indirect microbiota-dependent biological responses contribute to glucose homeostasis, which prevents hyperglycemia-induced inflammatory conditions. The composition and function of the gut microbiota vary between individuals and whereas dietary habits influence the gut microbiota, the gut microbiota influences both the nutritional and biological homeostasis of the host. A healthy gut microbiota requires the presence of beneficial microbiotic species as well as vital food structures to ensure appropriate feeding of the microbiota. This review focuses on the impact of plant-based food structures, the “fiber-encapsulated nutrient formulation”, and on the direct and indirect mechanisms by which the gut microbiota participate in host immune function.


2019 ◽  
Vol 34 (s1) ◽  
pp. s140-s140
Author(s):  
Mohana Kunasekaran ◽  
Mallory Trent ◽  
Elisa Lai ◽  
HaoYi Tan ◽  
Abrar Chughtai ◽  
...  

Introduction:Influenza vaccine is recommended for high-risk populations in Australia (including those aged over 65 years) but is less effective in the elderly due to a progressive and predictable age-related decline in immune function, referred to as immunosenescence. Aged care facilities (ACF) are known to be at high risk of explosive outbreaks of influenza (even in highly vaccinated populations) and may reflect a higher intensity of transmission within the closed setting of ACF, as well as lower immunity and immunosenescence in the frail elderly.Methods:To measure the impact of influenza in aged-care staff (ACS) and residents as well as vaccine effectiveness, a prospective observational epidemiological study was conducted in collaboration with an aged-care provider with multiple sites from March to October 2018. Weekly active surveillance on influenza-like symptoms and questionnaires were used to collect data on two groups: ACS and residents. A range of variables was examined against their 2018 influenza vaccination status in statistical analysis.Results:Vaccination rates were high in residents and consistent with other studies. Vaccine rates in aged-care staff were lower and consistent with other studies.Discussion:Residents and relatives are unlikely to change their minds about vaccination from year to year unless there is targeted effort to persuade them to so, and negative perception of the vaccine is likely to persist. Workplace influenza vaccination programs targeted at staff could be an effective method of raising vaccine uptake.


2020 ◽  
Author(s):  
Ravi Philip Rajkumar

AbstractBackgroundThe COVID-19 pandemic has affected the entire world, but there are wide variations in prevalence and mortality across nations. Genetic variants which influence behavioural or immune responses to pathogens, selected for by pathogen pressure, may influence this variability. Two relevant polymorphisms in this context are the s allele of the serotonin transporter promoter (5-HTTLPR) and the G allele of the interleukin-6 gene (IL-6 rs1800795).MethodsThe frequencies of the 5-HTTLPR s allele and IL-6 rs1800795 G allele were obtained from published data. The correlations between these allele frequencies and the prevalence and mortality rates of COVID-19 were examined across 44 nations.ResultsThe IL-6 rs1800795 G allele was negatively correlated with COVID-19 prevalence (ρ = −0.466, p < 0.01) and mortality (ρ = −0.591, p<0.001) across nations. The 5-HTTLPR s allele was negatively correlated with COVID-19 mortality rates (ρ = −0.437, p = 0.023).ConclusionsThese results suggest that a significant relationship exists between genetic variants that influence behavioural and immune responses to pathogens and indices of the impact of COVID-19 across nations. Further investigation of these variants and their correlates may permit the development of better preventive or therapeutic strategies in the management of the COVID-19 pandemic.


2021 ◽  
Author(s):  
Elina Panahi ◽  
Danielle I. Stanisic ◽  
Christopher S. Peacock ◽  
Lara J. Herrero

Leishmania (Kinetoplastida: Trypanosomatidae) parasites are known to cause a broad spectrum of clinical diseases in humans, collectively known as the leishmaniases. Cutaneous leishmaniasis is the most common clinical presentation with varying degrees of severity largely driven by host immune responses, specifically the interplay between innate and adaptive immune response. The establishment of a T lymphocyte driven cell-mediated immune response, leading to activated phagocytic cells, leading to Leishmania parasite killing and control of infection. Alternatively, the Leishmania parasite manipulates the host immune system, enabling parasite proliferation and clinical disease. Here we review how the cumulative interactions of different aspects of the host immune response determines disease outcome, severity, and immunity to re-infection.


2011 ◽  
Vol 16 (17) ◽  
Author(s):  
C Brandt ◽  
H F Rabenau ◽  
S Bornmann ◽  
R Gottschalk ◽  
S Wicker

The emergence of the influenza A(H1N1)2009 virus provided a major challenge to health services around the world. However, vaccination rates for the public and for healthcare workers (HCWs) have remained low. We performed a study to review the reasons put forward by HCWs to refuse immunisation with the pandemic vaccine in 2009/10 and characterise attitudes in the influenza season 2010/11 due to the emergence of influenza A(H1N1)2009. A survey among HCWs and medical students in the clinical phase of their studies was conducted, using an anonymous questionnaire, at a German university hospital during an influenza vaccination campaign. 1,366 of 3,900 HCWs (35.0%) were vaccinated in the 2010/11 influenza season. Of the vaccinated HCWs, 1,323 (96.9%) completed the questionnaire in addition to 322 vaccinated medical students. Of the 1,645 vaccinees who completed the questionnaire, 712 had not been vaccinated against the influenza A(H1N1)2009 virus in the 2009/10 season. The main reason put forward was the objection to the AS03 adjuvants (239/712, 33.6%). Of the HCWs and students surveyed, 270 of 1,645 (16.4%) stated that the pandemic had influenced their attitude towards vaccination in general. Many German HCWs remained unconvinced of the safety of the pandemic (adjuvanted) influenza vaccine. For this reason, effective risk communication should focus on educating the public and HCWs about influenza vaccine safety and the benefits of vaccination.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Lili Tao ◽  
Ming Lu ◽  
Xiaoning Wang ◽  
Xiaoyan Han ◽  
Shuming Li ◽  
...  

Abstract Background This study was conducted to evaluate the impact of a comprehensive community intervention on cognition and inoculation behaviors of diabetic patients immunized with influenza vaccine. Methods A total of 1538 diabetic patients aged 35 years and above for outpatient visits and follow-up treatments were selected from six community health service centers (three for the experimental group, and the other three for the control group) in Chaoyang District, Beijing. Comprehensive interventions applied to the experimental group include patient intervention and community climate interventions. We compared the total awareness of influenza vaccine knowledge and influenza vaccination rates between the two groups before and after the intervention. Results Before the intervention, the total awareness rate of influenza vaccine in the experimental group and the control group was similar (50.6 and 50.2%, respectively. P = 0.171). After the intervention, the awareness rate of influenza vaccine in the experimental group and the control group increased. The amplitude of the increase was similar (70.3 and 70.1%, respectively. P = 0.822,). Before the intervention, there was no significant difference in the influenza vaccination rate between the experimental group and the control group (29.0 and 26.8%, respectively. P = 0.334). After the intervention, the vaccination rate of the experimental group was higher than that of the control group. The difference was statistically significant (The vaccination rate 45.8 and 27.4% for the experimental group and the control group, respectively. P < 0.001). Conclusion Comprehensive community interventions had a positive effect on vaccination in diabetic patients. Trial registration ChiCTR1900025194, registered in Aug,16th, 2019. Retrospectively registered.


Sign in / Sign up

Export Citation Format

Share Document