scholarly journals Photoperoxidation of ciprofloxacin antibiotic in aqueous medium using Fe3-XO4-Y-TiO2 particles as catalyst

2022 ◽  
Vol 47 (1) ◽  
pp. 55-63
Author(s):  
Ismael Laurindo Costa Junior ◽  
Kevin Augusto Ferreira ◽  
Cesar Augusto Kappes ◽  
Renata Mello Giona

Conventional treatment processes are not effective in removing micropollutants such as antibiotics and other drugs present in wastewater, and degradation methods based on advanced oxidative processes become attractive. Herein, it was synthesized Fe3-xO4-y-TiO2 particles by coprecipitation method and they were heat-treated at 100, 400, and 800 �C. The obtained solids were characterized by X-ray diffraction and thermogravimetric analysis and analytical determinations were performed using ultraviolet-visible (UV-Vis) spectrophotometry. The particles were evaluated in photoperoxidation processes on the degradation of the ciprofloxacin antimicrobial in an aqueous solution. The studies took place at pH 9; with an H2O2 concentration of 31 mg L�1 and particle mass 0.22 g L�1 previously defined and, in these conditions, degradation percentages between 40 and 85% were observed, with the removal in the Photo/H2O2/Fe3-xO4-y-TiO2 800 �C. The kinetic study performed for this process revealed the process adjusts to the first-order kinetics during the 120 min of reaction. The use of the catalyst can be attractive with the potential for degradation of the studied antimicrobial.

2011 ◽  
Vol 183-185 ◽  
pp. 2028-2031
Author(s):  
Gui Rong Wang

TiO2 photocatalyst modified by N and Fe ions was loaded on self-made fly ash forming adsorbent (FFA) using the sol-gel dip-coating process. The crystal structure and photoadsorption ability was characterized by X-ray diffraction (XRD) and UV-Vis spectrophotometer, respectively. The photo catalytic degradation of Reactive Brilliant Blue KN-R using N, Fe-TiO2/FFA was examined. Effects of initial dye concentration, pH value and hydrogen peroxide dosage on degradation were studied. The degradation of the organic molecule followed a pseudo-first-order kinetics according to the Langmuir model. Under the optimum operation conditions, 30 mg/L KN-R could be decolorized over 97.47% within 75 min.


2014 ◽  
Vol 70 (8) ◽  
pp. 1428-1433 ◽  
Author(s):  
C. Y. Kuo ◽  
C. H. Wu ◽  
J. T. Wu ◽  
Y. C. Chen

This study produced immobilized Cu2O via microwave irradiation. The surface properties of Cu2O were assessed by X-ray diffraction, scanning electron microscopy, and UV–vis spectroscopy. The catalytic activity of the generated Cu2O was examined for bisphenol (BPA) degradation in Cu2O/H2O2 and visible-light/Cu2O/H2O2 systems under various H2O2 concentrations. Cu2O can decompose H2O2 to generate radicals, similar to the Fenton-like process. The BPA degradation rate followed pseudo-first-order kinetics. The optimal H2O2 concentration was 30 mM and the BPA degradation rate under 30 mM H2O2 in the Cu2O/H2O2 and visible-light/Cu2O/H2O2 systems was 1.43 and 2.69 h−1, respectively. The original Cu2O partly oxidized into CuO in the visible-light/Cu2O/H2O2 system and the BPA degradation percentage declined to 51% from 100% after the fifth cycle.


2021 ◽  
Vol 13 (SP2) ◽  
pp. 1-8
Author(s):  
Gorby Gonzalles ◽  
Ningning Geng ◽  
Shuwei Luo ◽  
Chenchen Zhang ◽  
Caie Wu ◽  
...  

The stability of carotenoids in puff-dried yellow peach powder during commercial storage under different water activity conditions was studied. The results showed that when the corresponding water activity was above 0.576, the loss of adsorbed water in yellow peach powder was closely related to the crystallinity of the amorphous sugar matrix. However, the adsorption isotherms confirmed by water absorption behavior, X-ray diffraction (XRD) pat-terns, and scanning electron microscopy did not clearly indicate this loss of adsorbed water. The content changes of individual carotenoids (lutein, zeaxanthin, β-cryptoxanthin, α-carotene, and β-carotene) during storage followed pseudo first-order kinetics, and the degradation of lutein and zeaxanthin occurred quickly over time. The stability of total carotenoids gradually increased when the water activity was less than 0.576, but the carotenoids degraded sharply when the water activity was between 0.753 and 0.843. The loss of carotenoids was related to the water absorption and crystallization of the sugar matrix in the powder.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Hang Xu ◽  
Dandan Zhang ◽  
Airong Xu ◽  
Fengmin Wu ◽  
Renqiang Cao

Nano-ZnO supported on bentonite was prepared to form composite photocatalyst by sol-gel method. The photocatalyst was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscope (TEM). C.I. Acid Red 35 was used as simulating contaminant to be treated by ultraviolet light synergistic with nano-ZnO/bentonite. The results show that 5.7 nm ZnO particle was acquired and uniformly dispersed on the surface of the bentonite at calcination temperature of 200°C. The removal of C.I. Acid Red 35 could reach 84.9% after 200 min under optimum ZnO/bentonite dosage of 0.6 g L−1. The 60% ZnO content in ZnO/bentonite composite exhibited a great photocatalytic activity to treat C.I. Acid Red 35. The photocatalytic process followed pseudo-first-order kinetics and the best apparent rate constant was 0.00927 min−1with correlation coefficient (R2) of above 0.98.


Author(s):  
A. Leineweber ◽  
M. Löffler ◽  
S. Martin

Abstract Cu6Sn5 intermetallic occurs in the form of differently ordered phases η, η′ and η′′. In solder joints, this intermetallic can undergo changes in composition and the state of order without or while interacting with excess Cu and excess Sn in the system, potentially giving rise to detrimental changes in the mechanical properties of the solder. In order to study such processes in fundamental detail and to get more detailed information about the metastable and stable phase equilibria, model alloys consisting of Cu3Sn + Cu6Sn5 as well as Cu6Sn5 + Sn-rich melt were heat treated. Powder x-ray diffraction and scanning electron microscopy supplemented by electron backscatter diffraction were used to investigate the structural and microstructural changes. It was shown that Sn-poor η can increase its Sn content by Cu3Sn precipitation at grain boundaries or by uptake of Sn from the Sn-rich melt. From the kinetics of the former process at 513 K and the grain size of the η phase, we obtained an interdiffusion coefficient in η of (3 ± 1) × 10−16 m2 s−1. Comparison of this value with literature data implies that this value reflects pure volume (inter)diffusion, while Cu6Sn5 growth at low temperature is typically strongly influenced by grain-boundary diffusion. These investigations also confirm that η′′ forming below a composition-dependent transus temperature gradually enriches in Sn content, confirming that Sn-poor η′′ is metastable against decomposition into Cu3Sn and more Sn-rich η or (at lower temperatures) η′. Graphic Abstract


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohamed S. Yahia ◽  
Ahmed S. Elzaref ◽  
Magdy B. Awad ◽  
Ahmed M. Tony ◽  
Ahmed S. Elfeky

Abstract Commercial Granulated Active Carbon (GAC) has been modified using 10 Gy dose Gamma irradiation (GAC10 Gy) for increasing its ability of air purification. Both, the raw and treated samples were applied for removing Chlorpyrifos pesticide (CPF) from ambient midair. Physicochemical properties of the two materials were characterized by Fourier Transform Infrared (FT-IR) and Raman spectroscopy. The phase formation and microstructure were monitored using X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), supported with Energy-Dispersive X-ray (EDX). The Surface area measurement was detected using BET particle size prosometry. Obtained outcomes showed that, the maximum adsorption capacity, given by Langmuir equations, was greatly increased from 172.712 to 272.480 mg/g for GAC and GAC10 Gy, respectively, with high selectivity. The overall removal efficiency of GAC10 Gy was notably comparable to that of the original GAC-sorbent. The present study indicated that, gamma irradiation could be a promising technique for treating GAC and turned it more active in eliminating the pesticides pollutants from surrounding air. The data of equilibrium has been analyzed by Langmuir and Freundlich models, that were considerably better suited for the investigated materials than other models. The process kinetics of CPF adsorbed onto both tested carbon versions were found to obey the pseudo first order at all concentrations with an exception at 70 mg/l using GAC, where, the spontaneous exothermic adsorption of Chlorpyrifos is a strong function for the pseudo-first order (PFO) and pseudo second order (PSO) kinetics.


2006 ◽  
Vol 20 (25n27) ◽  
pp. 3999-4004
Author(s):  
HIROSHI MATSUI ◽  
KAZUFUMI WATANABE

Antimony-platinum bilayers were prepared on titanium substrates by the two-step electrodeposition in the usual baths, and then surface alloys were formed by the atom diffusion in the solid phase. The simple antimony layer was little influenced by the substrate in both the measurements of X-ray diffraction and the i - E characteristic in a sulfuric acid solution. Regarding the bilayers, the catalytic activity in hydrogen evolution reaction was very sensitive to the presence of platinum, while the hydrogen adsorbability was quite insensitive. An interaction between antimony and platinum was confirmed by the appearance of a new dissolution wave in the electrochemical measurement and the occurrence of a new diffraction in the X-ray diffraction pattern after the heat-treatment of about 400°C. Although the new diffraction disagreed with any of the reported alloys, clear diffraction pattern of PtSb 2 alloy was observed, when the bilayers were heat-treated at about 600°C for one hour. Considering the penetration depth of X-ray, the alloying of antimony and platinum seems to occur also at low temperatures at least at the top surface.


2021 ◽  
Author(s):  
Mei Yang ◽  
Yishu Zhang ◽  
Haoxing You ◽  
Richard Smith ◽  
Richard D. Sisson

Abstract Selective laser melting (SLM) is an additive manufacturing technique that can be used to make the near-net-shape metal parts. M2 is a high-speed steel widely used in cutting tools, which is due to its high hardness of this steel. Conventionally, the hardening heat treatment process, including quenching and tempering, is conducted to achieve the high hardness for M2 wrought parts. It was debated if the hardening is needed for additively manufactured M2 parts. In the present work, the M2 steel part is fabricated by SLM. It is found that the hardness of as-fabricated M2 SLM parts is much lower than the hardened M2 wrought parts. The characterization was conducted including X-ray diffraction (XRD), optical microscopy, Scanning Electron Microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS) to investigate the microstructure evolution of as-fabricated, quenched, and tempered M2 SLM part. The M2 wrought part was heat-treated simultaneously with the SLM part for comparison. It was found the hardness of M2 SLM part after heat treatment is increased and comparable to the wrought part. Both quenched and tempered M2 SLM and wrought parts have the same microstructure, while the size of the carbides in the wrought part is larger than that in the SLM part.


1996 ◽  
Vol 52 (1) ◽  
pp. 100-109 ◽  
Author(s):  
F. Boucher ◽  
M. Evain ◽  
V. Petříček

The incommensurately modulated structure of tantalum germanium telluride, TaGe0.354Te2, was determined by single-crystal X-ray diffraction. The dimensions of the basic orthorhombic cell are a = 6.4394 (5), b = 14.025 (2), c = 3.8456 (5) Å, V = 347.3 (1) Å3 and Z = 4. The (3 + 1)-dimensional superspace group is Pnma(00γ)s00, γ = 0.3544 (3). Refinements on 1641 reflections with I ≥ 3σ(I) converged to R = 0.065 and 0.044 for 526 main reflections and R = 0.061, 0.12, 0.28 and 0.32 for 782 first-order, 237 second-order, 37 third-order and 59 fourth-order satellites, respectively. Since the structure exhibits a strong occupational modulation of both Ta and Ge atoms, along with important displacive modulation waves, crenel functions were used in the refinement in combination with an orthogonalization procedure. Such an approach is shown to be the most convenient and to give reliable coordinations and distances. A detailed analysis of some Te...Te distances is performed, in connection with already known commensurately and incommensurately modulated MAx Te2 structures.


MRS Advances ◽  
2018 ◽  
Vol 3 (61) ◽  
pp. 3543-3549
Author(s):  
Pablo González ◽  
Andrea C. De Los Santos ◽  
Jorge R. Castiglioni ◽  
María A. De León

ABSTRACTA raw clay from Uruguay was modified with aluminium to obtain an aluminium pillared clay (Al-PILC). The solids were characterized by scanning electron microscopy, X-ray diffraction and nitrogen adsorption-desorption isotherms. The Al-PILC retained the typical laminar structure of montmorillonite. The specific surface area and the microporous volume of the Al-PILC, 235 m2 g-1 and 0.096 cm3 g-1, respectively, were much higher than those of the clay. The phosphate adsorption capacity of the Al-PILC was higher than those of the clay. The phosphate adsorption kinetic followed the pseudo-first-order model for both, the clay and the Al-PILC, and the phosphate adsorption isotherm for the Al-PILC fit the Freundlich model.


Sign in / Sign up

Export Citation Format

Share Document