scholarly journals Evaluation of adaptive capacity of genotypes of spring cereals in arid conditions of the Astrakhan region

2019 ◽  
pp. 25-30
Author(s):  
Valentina Aleksandrovna Fedorova ◽  
Nina Alekseevna Naumova ◽  
Ekaterina Vasylyevna Yachmeneva ◽  
Yulia Pavlovna Tarasenkova

Objects of research were: spring wheat Saratovskaya 70-st, Cardinal, 3 Curenta, Madam, Nil avocet yr7's, Angarida; spring barley Ratnik-st, Medium 135, grace, Vakula, Brassa; spring oats Showjumping-st, Leo, Bulan, Kuranin. As a result of the study of these varieties of spring crops, the most adapted to local soil and climatic conditions samples were identified. The selected samples were distinguished by high biological plasticity, growth and development rates, maximum use of moisture, as well as the ability to form high grain yields.

2012 ◽  
Vol 61 (2) ◽  
pp. 195-203
Author(s):  
Kinga Treder ◽  
Maria Wanic ◽  
Janusz Nowicki

Competitive interactions between spring wheat and spring barley were traced based on a pot experiment. In the years 2003-2004, three cycles of the experiment were carried out in a greenhouse. Two spring cereals - wheat and barley, sown in a mixture and in a monoculture, with different mineral fertilisation levels, were the object of evaluation and comparison. The experiment was set up according to the additive scheme, determining dry weight values for both species in 5 growth stages (emergence, tillering, shooting, heading and ripening). Results were used to determine relative yields and competition ratios. It was demonstrated that competition between the cereals started already from the emergence stage and lasted till the end of vegetation, manifesting itself with the greatest strength at the heading stage, but thereafter it weakened in the NPK poorer environment. Access to a larger pool of macroelements resulted in the intensification of competitive interactions. Spring barley used the limited growth factors better than wheat from shooting till the ripening period, and a reverse relation was exhibited only at the tillering stage.


1970 ◽  
Vol 75 (3) ◽  
pp. 553-557 ◽  
Author(s):  
R. S. Jessop ◽  
J. D. Ivins

SUMMARYExperiments to study the effect of date of sowing at two centres in each of 3 years, 1967–9, are described and the results discussed. The earliest sowing date (early March) gave the highest yield of spring barley at both centres and of spring wheat at Sutton Bonington, but at Boxworth in 1967 and 1969 later sowing (early or late April) gave higher yields of grain, which were attributable mainly to increased grain numbers per ear. It is argued that in 1968 poor weather conditions in July and August resulted in very low 1000 grain weights, and although grain numbers were again higher from late sowing at Boxworth this treatment gave the lowest yields because of poorly filled grain. The date of sowing also affected yields of total dry matter, ratios of grain to straw, leaf-area indices, numbers of grains per ear and 1000 grain weights.


1968 ◽  
Vol 70 (3) ◽  
pp. 323-329 ◽  
Author(s):  
J. K. R. Gasser

SUMMARYSoil samples taken in the autumn after ploughing ryegrass, clover, and ryegrass/clover leys were used to measure the mineral-N (ammonium-N + nitrate-N) in the fresh soil (mineral-Nfresh), the increase in mineral-N on incubating the fresh soils (Δmineral-Nfresh), and the increase in mineral-N on incubating the re-wetted air-dry soils (Δmineral -Nair-dry). Mineral-Nfresh and Δ mineral-Nair-dry were measured on further soil samples taken the following spring. Values of Δmineral-Nair-dry, not only correlated best with grain yields and N uptakes by wheat without fertilizer-N, but also with yield responses and fertilizer-N recovered from fertilizer-N applied to the winter wheat.Treatment of the ley altered measurements on samples taken in the autumn but not those taken the following spring.Soil samples taken in the autumn 1960 from under three-year grass leys were used to measure mineral-Nfresh, Δ mineral-Nfresh and Δ mineral-Nair-dry Spring wheat was grown in 1961 followed by spring barley in 1962. Further soil samples were taken in spring 1962 after cultivations were complete and before the barley was sown or fertilizers applied.A mineral-Nair-dry was the best measurement to use on soils from under grass leys. Values depended on grass species, and were increased by N applied to the ley. Differences had largely disappeared 18 months later. A mineral-Nalr.dry was positively correlated with grain yields of spring wheat grown both with and without fertilizer-N, and with the yield response or the nitrogen recovered from, a dressing of 56 lb N/acre.With fertilizer-N yields of winter wheat after the mixed leys tended to the same maximum value independently ofmineralizable-N in the soil. After grass leys maximum yields of spring wheat given fertilizer-N increased with increasing mineralizable-N in the soil.


1994 ◽  
Vol 8 (4) ◽  
pp. 713-716 ◽  
Author(s):  
Haisheng S. Xie ◽  
William A. Quick ◽  
Andrew I. Hsiao

The influence of temperature, soil moisture, and light intensity on the tolerance of spring wheat, durum wheat, and spring barley to imazamethabenz and safened fenoxaprop-p-ethyl was determined in growth chamber experiments. Imazamethabenz at 500 g/ha reduced plant height and shoot fresh weight of durum and spring wheats grown under prolonged 70% shade. The height of durum and spring wheats was reduced by imazamethabenz under a low temperature regime. Compared to the plants grown under standard conditions, the shoot weight of spring and durum wheat plants was not reduced by imazamethabenz under drought, or high and low temperature conditions. Barley tolerance to imazamethabenz was not affected by environment. All three spring cereals were tolerant to fenoxaprop-p-ethyl plus a safener at 92 g/ha; and such tolerance was not greatly affected by various environments examined.


2010 ◽  
Vol 24 (2) ◽  
pp. 108-116 ◽  
Author(s):  
Brian L. Beres ◽  
K. Neil Harker ◽  
George W. Clayton ◽  
Eric Bremer ◽  
Robert E. Blackshaw ◽  
...  

The inclusion of winter cereals in spring-annual rotations in the northern Great Plains may reduce weed populations and herbicide requirements. A broad range of spring and winter cereals were compared for ability to suppress weeds and maximize grain yield at Lacombe (2002 to 2005) and Lethbridge (2003 to 2005), Alberta, Canada. High seeding rates (≥ 400 seeds/m2) were used in all years to maximize crop competitive ability. Spring cereals achieved high crop-plant densities (> 250 plants/m2) at most sites, but winter cereals had lower plant densities due to winterkill, particularly at Lethbridge in 2004. All winter cereals and spring barley were highly effective at reducing weed biomass at Lacombe for the first 3 yr of the study. Weed suppression was less consistently affected by winter cereals in the last year at Lacombe and at Lethbridge, primarily due to poor winter survival. Grain yields were highest for spring triticale and least for spring wheat at Lacombe, with winter cereals intermediate. At Lethbridge, winter cereals had higher grain yields in 2003 whereas spring cereals had higher yields in 2004 and 2005. Winter cereals were generally more effective at suppressing weed growth than spring cereals if a good crop stand was established, but overlap in weed-competitive ability among cultivars was considerable. This information will be used to enhance the sustainable production of winter and spring cereals in traditional and nontraditional agro-ecological zones.


Author(s):  
M.V. Gorobets

Spring barley is an important food, fodder and technical crop, the volume of cultivation of which is much less than the national needs for it. To date, intensive varieties of this valuable crop have been bred, which is demanding to soil fertility, which necessitates increased yields by improving the sowing quality of seeds. Modern chemical fertilizers can not provide stable plant productivity, which would ultimately increase the yield capacity of spring barley in unstable natural and climatic conditions. In addition, the use of preparations that do not threaten the environment and the quality of crops becomes relevant. One of them is bischofite, an aqueous solution of which is a natural stimulant that provides germinating power and sprouting energy of spring barley seeds. The laboratory studies on the example of three varieties of spring barley (Helios, Vakula, Parnassus) showed that soaking of the seeds in 0.1 and 1% concentration of aqueous solution of bischofite increases their germinating power and sprouting energy, which has a positive effect on the growth and development of barley, yield growth, fodder and food quality of grain. These researches allow the use of natural bischofite in agriculture in order to create the optimal conditions for growth and development of spring barley to obtain high and stable yields. Key words: bischofite, spring barley, germinating power, sprouting energy, sowing qualities.


Weed Science ◽  
1995 ◽  
Vol 43 (1) ◽  
pp. 128-133 ◽  
Author(s):  
Gail A. Wicks ◽  
Garold W. Mahnken ◽  
Gordon E. Hanson

Spring small grains were not as competitive with barnyardgrass and witchgrass as winter wheat. Winter wheat grain yields were greater than spring barley or spring wheat in 1986, 1987, and 1988 and oat in 1986 and 1988. Barnyardgrass, stinkgrass, and witchgrass control with glyphosate plus 2,4-D plus atrazine at 0.6 plus 0.8 plus 1.7 kg ha−1was usually less when the herbicides were applied to stubble of spring small grain versus winter wheat due to the advanced weed growth at treatment Barnyardgrass and witchgrass were more difficult to control than stinkgrass, redroot pigweed, tumble pigweed, kochia, and tumble thistle. No-till corn planted into winter wheat stubble had fewer barnyardgrass and witchgrass than corn planted into spring wheat stubble. The addition of metolachlor plus atrazine at 1.7 plus 0.6 kg ha−1eliminated differences among small grain cultivars in weed control in corn. Corn grain yields from winter wheat plots were greater than other small grains in 1989 because of better weed control and more crop residue.


Plant Disease ◽  
2013 ◽  
Vol 97 (4) ◽  
pp. 537-546 ◽  
Author(s):  
Richard W. Smiley ◽  
Stephen Machado ◽  
Jennifer A. Gourlie ◽  
Larry C. Pritchett ◽  
Guiping Yan ◽  
...  

There is interest in converting rainfed cropping systems in the Pacific Northwest from a 2-year rotation of winter wheat and cultivated fallow to direct-seed (no-till) systems that include chemical fallow, spring cereals, and food legume and brassica crops. Little information is available regarding effects of these changes on plant-parasitic nematodes. Eight cropping systems in a low-precipitation region (<330 mm) were compared over 9 years. Each phase of each rotation occurred each year. The density of Pratylenchus spp. was greater in cultivated than chemical fallow, became greater with increasing frequency of host crops, and was inversely associated with precipitation (R2 = 0.92, α < 0.01). Densities after harvesting mustard, spring wheat, winter wheat, and winter pea were greater (α < 0.01) than after harvesting spring barley or spring pea. Camelina also produced low densities. Winter wheat led to a greater density of Pratylenchus neglectus and spring wheat led to a greater density of P. thornei. Density of Pratylenchus spp. was correlated (R2 = 0.88, α < 0.01) but generally higher when detected by real-time polymerase chain reaction on DNA extracts from soil than when detected by a traditional method. Selection of different Pratylenchus spp. by different wheat cultivars or growth habit must be addressed to minimize the level of nematode risk to future plantings of intolerant crops.


2020 ◽  
Vol 10 (1) ◽  
pp. 246-253 ◽  
Author(s):  
O. Gorash ◽  
R. Klymyshena ◽  
V. Khomina ◽  
L. Vilchynska

The correspondence of agro-ecological and climatic factors of the external environment of the industrial zone of brewing barley to the biological requirements of barley culture has been analyzed. The peculiarity of brewing barley in the formation of the crop and its quality is characterized by the necessity of directing, in the process of photosynthesis, the accumulation of the carbohydrate component of the grain more than in the protein content. The important role of ensuring these requirements depends mainly on the PAR of the long-wavelength range, especially during the second half of the growing season, during the growth and development of the grain. At this time, an important factor in ensuring the brewing quality of barley is the moisture supply of soil moisture, as it depends on the growth process of the grain. The barley culture belongs to the early spring cereals. Due to the changes in climatic conditions, which is directly related to the zone of industrial brewing of barley by analysis of ten-year temperature data, the favorable conditions for the growth and development of barley, the conditions of sowing in early spring have been found. In particular, sowing time is actually possible 20-25 days earlier than traditional, this is the first and second ten days of March. Conducted trial reconnaissance crops in the first decade of March ensured the effective development of plants and the formation of crops favorable to meet the quality requirements for the cultivation of products for the production of malt. The vegetative period of development before the onset of the generative has increased in plants up to 45 days, which by itself is a rather positive component of the efficiency of cultivation technology according to the results of the analysis of climatic factors of the zone of industrial production of brewing barley. As a result of analytical studies the improvement of ecological and biological compliance of spring barley development for the period 2010-2019 has been revealed. Due to the early onset of heat in March, there was a need to make adjustments to certain elements of technology based on appropriate research to ensure effective implementation of the agro-ecological resource of the area. The urgent tasks, with the aim of balanced processes of spring barley development to energy conditions of the environment, are research with seeding rate, row spacing, depth of seeds wrapping, application of mineral fertilizers.


1991 ◽  
Vol 117 (1) ◽  
pp. 23-37 ◽  
Author(s):  
E. D. Williams ◽  
M. J. Hayes

SUMMARYSpring barley and spring oats were strip-seeded into crops of the white clover cultivar Alice at Hereford in 1987 and cultivar S184 at Aberystwyth in 1988. Drilling was done with or without a band-spray of glyphosate, a moderate or low (1988 only) dose of paraquat or into plots where the clover had been killed by herbicide 2 months previously.In the first experiment, initial cereal emergence was sparse; growth was suppressed in the unchecked (unsprayed) clover base but was vigorous in the clover-free plots; the cereals also became dominant in the swards sprayed with herbicide. Whole-crop yields in mid-August were 13, 3–4 and 8–10 t DM/ha in the plots in which clover was killed, unchecked or checked with herbicide. Clover contributed 4–12% of the harvested herbage in the latter treatment. This treatment also yieldedc. 70 % as much N, carbohydrate and fibre as that without clover. Grain yields exceeded 7 t/ha without clover but were only 0·3 t/ha for barley and 1·1 t/ha for oats with unchecked clover; in the checked clover plots, barley yielded 60% and oats 78% as much as on the clover-free plots. Four and 5 weeks after whole-crop harvest, residual clover growth was 27 and 39% of that on unchecked plots for oats and barley, respectively.In the second experiment, the cereals emerged thickly but were later dominated by the clover, and an equitable balance was achieved only with the larger dose of paraquat. However, the oat cultivar Emrys was suppressed less than the tall barley cultivar Dandy; the short barley cultivar Digger was the most suppressed. Mean whole-crop yields were 11 t/ha in the treatment without clover, about half this in the unchecked bases andc. 9 t/ha with the larger dose of paraquat. Differences in chemical composition reflected much larger clover contents in 1988 than in 1987. Yields of N and water-soluble carbohydrate were at least as large or larger with moderate paraquat than for the clover-free plots. Grain yields ranged from 5·6 to 6·9 t/ha for the three cereal cultivars without clover but were negligible to very small in the unchecked and band-sprayed treatments, and were 3·4 and 2·0 t/ha for oats and barley, respectively, with the larger dose of paraquat. Residual stolon weights, 70–80 days after whole-crop harvest, greatly exceeded initial values in all treatments. They were smallest following the larger dose of paraquat, and larger in Digger than in Dandy, which in turn was larger than in Emrys.It is concluded that the concept of growing cereals in a clover base shows potential as a low input–moderate output system of cereal production. However, further longer term work is needed on regulation of the cereal–clover balance, on the release and uptake of N and the environmental effects of the technique.


Sign in / Sign up

Export Citation Format

Share Document