scholarly journals Effect of the combined use of phytohormone-producing bacteria and Chistalan herbicide on the physiological and morphological parameters of wheat plants

Author(s):  
Arina Vladimirovna Feoktistova ◽  
Maxim Danilovich Timergalin ◽  
Timur Vilevich Rameev ◽  
Sergei Pavlovich Chetverikov

Results of the treatment with bacteria producing phytohormones, and herbicide-tolerant on physiological and morphological parameters of wheat plants with simultaneous exposure to Chistalan herbicide are presented. Strains of Pseudomonas sp. DA1.2 and P. koraiensis IB-4 prevented the suppression of plant growth, caused the redistribution of auxins between in favor of escape and a decrease in the content of ABA in the roots of wheat plants against the action of the herbicide Chistalan. The bacteria had a positive effect on the photosynthetic apparatus and reduced the development of oxidative stress caused by the herbicide. It is shown that herbicide stress is reduced under the influence of bacteria.

Author(s):  
M. D. Timergalin ◽  
A. V. Feoktistova ◽  
T. V. Rameev ◽  
S. P. Chetverikov ◽  
Z. R. Sultangazin

The effect of the identified auxin-producing strain of bacteria on wheat plants when treated with the herbicides Chistalan and Nanometh in the field was studied. The ability of bacterial treatment to increase wheat yield under herbicidal stress due to the positive effect of bacteria on plant growth and development at early stages of development is shown.


Vsyo o myase ◽  
2020 ◽  
pp. 53-55
Author(s):  
Tunieva E.K. ◽  
◽  
Spiridonov K.I. ◽  

The combined use of polysaccharide have a positive effect on reducing syneresis of gels. The article presents the results of determining the syneresis of carrageenan gel in the presence of different concentrations of xanthan gum. The dependence of the increase in the syneresis of the carrageenan gel during storage on the dosage of the polysaccharide was revealed. It was found that the use of a mixture of carrageenan: xanthan in a ratio of 1: 1 led to reduce syneresis by more than 70 % in comparison with carrageenan gel without gum.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ayinuer Tuerdi ◽  
Shu Kikuta ◽  
Makoto Kinoshita ◽  
Teru Kamogashira ◽  
Kenji Kondo ◽  
...  

AbstractOxidative stress causes tissue damage, affecting age-related pathologies. Protein restriction (PR) provides a powerful intervention strategy for reducing oxidative stress, which may have a positive effect on individual organs. However, it is unknown whether PR intervention influences the olfactory system. Here, we investigated how 10 months of PR could affect the cell dynamics of the olfactory epithelium (OE) in mice. We found that PR reduced age-related loss of outer hair cells in the cochlea, providing preventive effects against age-related hearing loss. In contrast, PR resulted in reduced mature olfactory sensory neurons (OSNs), increased proliferative basal cells, and increased apoptotic OSNs in zone 1 (the only area containing neurons expressing NQO1 [quinone dehydrogenase 1]) of the OE in comparison with animals given a control diet. Substantial oxidative stress occurred in NQO1-positive cells and induced apoptotic OSNs in zone 1. These results indicate that in contrast to the positive effect on the auditory system, PR induces oxidative stress and structurally and functionally negative effects on OSNs in zone 1, which is probably involved in the bioactivation of NQO1.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 155
Author(s):  
Anastasia Giannakoula ◽  
Ioannis Therios ◽  
Christos Chatzissavvidis

Photosynthetic changes and antioxidant activity to oxidative stress were evaluated in sour orange (Citrus aurantium L.) leaves subjected to lead (Pb), copper (Cu) and also Pb + Cu toxicity treatments, in order to elucidate the mechanisms involved in heavy metal tolerance. The simultaneous effect of Pb− and Cu on growth, concentration of malondialdehyde (MDA), hydrogen peroxide (H2O2), chlorophylls, flavonoids, carotenoids, phenolics, chlorophyll fluorescence and photosynthetic parameters were examined in leaves of Citrus aurantium L. plants. Exogenous application of Pb and Cu resulted in an increase in leaf H2O2 and lipid peroxidation (MDA). Toxicity symptoms of both Pb and Cu treated plants were stunted growth and decreased pigments concentration. Furthermore, photosynthetic activity of treated plants exhibited a significant decline. The inhibition of growth in Pb and Cu-treated plants was accompanied by oxidative stress, as indicated by the enhanced lipid peroxidation and the high H2O2 concentration. Furthermore, antioxidants in citrus plants after exposure to high Pb and Cu concentrations were significantly increased compared to control and low Pb and Cu treatments. In conclusion, this study indicates that Pb and Cu promote lipid peroxidation, disrupt membrane integrity, reduces growth and photosynthesis and inhibit mineral nutrition. Considering the potential for adverse human health effects associated with high concentrations of Pb and Cu contained in edible parts of citrus plants the study signals that it is important to conduct further research into the accessibility and uptake of the tested heavy metals in the soil and whether they pose risks to humans.


1999 ◽  
Vol 54 (9-10) ◽  
pp. 824-829 ◽  
Author(s):  
Thomas Gerhard Reichenauer ◽  
Harald Romuald Bolhàr-Nordenkampf

Tropospheric ozone has been recognised as a limiting factor for plant growth since late fifties of our century. The decrease in the rate of light saturated net photosynthesis (Asat) was shown to be the major effect of ozone in leaves with negative consequences for plant growth and the development of plant communities. The reasons for the ozone-induced decrease in Asat are still under investigation. Possible mechanisms are an increasing stomatal limitation, an increase in mesophyll limitation including a reduction of the CO2 fixation in the Calvin cycle and an impairment of the photochemical reactions in the grana membranes of chloroplasts. We conclude from the reviewed literature and from our own experiments that a decrease in carboxylation efficiency (CE) seems to be an early event caused by ozone leading to a decrease in Asat. The loss in current photochemical capacity (Fv/Fm) appears with a lag phase of many days and therefore the loss is thought to be a secondary effect due to a decreased demand of ‘assimilatory power’


1998 ◽  
Vol 79 (4) ◽  
pp. 280-281
Author(s):  
R. I. Zhivoglyad

The results of the influence of the Hirudo medicinalis leeches and antibacterial therapy on homeostasis indices in patients with hormono dependent and inflammatory diseases of genital organs are analyzed. The positive effect of hirudotherapy courses on general and biochemical indices of blood changed as a result of the pathologic process progression is shown. The combined use of hirudotherapy and antibacterial treatment is recommended.


Biomolecules ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1693
Author(s):  
Javaria Afzal ◽  
Muhammad Hamzah Saleem ◽  
Fatima Batool ◽  
Ali Mohamed Elyamine ◽  
Muhammad Shoaib Rana ◽  
...  

The impact of heavy metal, i.e., cadmium (Cd), on the growth, photosynthetic pigments, gas exchange characteristics, oxidative stress biomarkers, and antioxidants machinery (enzymatic and non-enzymatic antioxidants), ions uptake, organic acids exudation, and ultra-structure of membranous bounded organelles of two rice (Oryza sativa L.) genotypes (Shan 63 and Lu 9803) were investigated with and without the exogenous application of ferrous sulfate (FeSO4). Two O. sativa genotypes were grown under different levels of CdCl2 [0 (no Cd), 50 and 100 µM] and then treated with exogenously supplemented ferrous sulfate (FeSO4) [0 (no Fe), 50 and 100 µM] for 21 days. The results revealed that Cd stress significantly (p < 0.05) affected plant growth and biomass, photosynthetic pigments, gas exchange characteristics, affected antioxidant machinery, sugar contents, and ions uptake/accumulation, and destroy the ultra-structure of many membranous bounded organelles. The findings also showed that Cd toxicity induces oxidative stress biomarkers, i.e., malondialdehyde (MDA) contents, hydrogen peroxide (H2O2) initiation, and electrolyte leakage (%), which was also manifested by increasing the enzymatic antioxidants, i.e., superoxidase dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) and non-enzymatic antioxidant compounds (phenolics, flavonoids, ascorbic acid, and anthocyanin) and organic acids exudation pattern in both O. sativa genotypes. At the same time, the results also elucidated that the O. sativa genotypes Lu 9803 are more tolerant to Cd stress than Shan 63. Although, results also illustrated that the exogenous application of ferrous sulfate (FeSO4) also decreased Cd toxicity in both O. sativa genotypes by increasing antioxidant capacity and thus improved the plant growth and biomass, photosynthetic pigments, gas exchange characteristics, and decrease oxidative stress in the roots and shoots of O. sativa genotypes. Here, we conclude that the exogenous supplementation of FeSO4 under short-term exposure of Cd stress significantly improved plant growth and biomass, photosynthetic pigments, gas exchange characteristics, regulate antioxidant defense system, and essential nutrients uptake and maintained the ultra-structure of membranous bounded organelles in O. sativa genotypes.


Sign in / Sign up

Export Citation Format

Share Document