scholarly journals Overview on the Blockchain-Based Supply Chain Systematics and Their Scalability Tools

2021 ◽  
Vol 4 ◽  
pp. 45-69
Author(s):  
Houssein Hellani ◽  
Layth Sliman ◽  
Abed Ellatif Samhat ◽  
Ernesto Exposito

Modern IT technologies shaped the shift in economic models with many advantages on cost, optimization, and time to market. This economic shift has increased the need for transparency and traceability in supply chain platforms to achieve trust among partners. Distributed ledger technology (DLT) is proposed to enable supply chains systems with trust requirements. In this paper, we investigate the existing DLT-based supply chain projects to show their technical part and limitations and extract the tools and techniques used to avoid the DLT scalability issue. We then set the requirements for a typical DLT-based supply chain in this context. The analyses are based on the scalability metrics such as computing, data storage, and transaction fees that fit the typical supply chain system. This paper highlights the effects of Blockchain techniques on scalability and their incorporation in supply chains systems. It also presents other existing solutions that can be applied to the supply chain. The investigation shows the necessity of having such tools in supply chains and developing them to achieve an efficient and scalable system. The paper calls for further scalability enhancements throughout introducing new tools and/or reutilize the current ones. Doi: 10.28991/esj-2021-SP1-04 Full Text: PDF

Logistics ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 75
Author(s):  
Christian Straubert ◽  
Eric Sucky

Background: The use of blockchain technology for tracking and tracing (T&T) in supply chains is the subject of lively debate in scientific literature. However, distributed ledger technology (DLT) does not have to have the characteristic blockchain structure and often performs better without such a structure. Generalized DLT for T&T in supply chains has rarely been discussed in the existing literature. Methods: This article presents an exploratory case study research of eight companies to identify the main goals, and problems that the companies have when they engage in T&T. This practical perspective is complemented by a theoretical systems thinking perspective. Based on these two foundations, we discuss the usefulness of blockchain technology and, more generally, DLT for T&T in supply chains. Results: Based on our analysis, DLT is only necessary in special cases, e.g., when the owners of the data have an interest in deleting the data, but the data stakeholders do not. In the other cases examined, DLT competes with other technologies, such as conventional, centralized databases in combination with digital signatures. Furthermore, it became evident that DLT can only be useful for supply chain tracing. The technological features of DLT do not provide any benefit for supply chain tracking, i.e., the timely communication of the status of a physical good. Conclusions: Distributed ledgers often have a disadvantage in that they are very complex and, therefore, expensive. DLT should preferably only be used when it is technologically necessary or the simplest/cheapest choice, which is probably not all that often. Finally, the usefulness of distributed ledger technology and its integrated smart contract technology is highly dependent on how easy it is to link the real physical world to a digital record/contract in an error-free and tamper-proof way. Currently, such a definite link exists only in very few cases and is often impossible.


Computers ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 89
Author(s):  
Annegret Henninger ◽  
Atefeh Mashatan

The global supply chain is a network of interconnected processes that create, use, and exchange records, but which were not designed to interact with one another. As such, the key to unlocking the full potential of supply chain management (SCM) technologies is achieving interoperability across participating records systems and networks. We review existing research and solutions using distributed ledger technology (DLT) and provide a survey of its current state of practice. We additionally propose a holistic solution: a DLT-based interoperable future state that could enable the interoperable, efficient, reliable, and secure exchange of records with integrity. Finally, we provide a gap analysis between our proposed future state and the current state, which also serves as a gap analysis for many fractional DLT-based SCM solutions and research.


2021 ◽  
Author(s):  
Mounir Bensalem

The evolution towards Industry 4.0 is driving the need for innovative solutions in the area of network management, considering the complex, dynamic and heterogeneous nature of ICT supply chains. To this end, Intent-Based networking (IBN) which is already proven to evolve how network management is driven today, can be implemented as a solution to facilitate the management of large ICT supply chains. In this paper, we first present a comparison of the main architectural components of typical IBN systems and, then, we study the key engineering requirements when integrating IBN with ICT supply chain network systems while considering AI methods. We also propose a general architecture design that enables intent translation of ICT supply chain specifications into lower level policies, to finally show an example of how the access control is performed in a modeled ICT supply chain system.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Junhai Ma ◽  
Wandong Lou

This paper studies the complex characteristics caused by the price competition in multichannel household appliance supply chains. We consider a two-level household appliance supply chain system consisting of a manufacturer with an Internet channel and a retailer with a traditional channel and an Internet channel. Each channel’s price-setting follows the bounded rational decision process in order to obtain the optimal profit or more market share. Considering that the price competition often leads to the demand and order fluctuation, we also investigate the bullwhip effect of the multichannel supply chains on the basis of the order-up-to-inventory policy. From the numerical simulation, we find a system in a chaotic state will suffer larger bullwhip effect than a stable system, and the manufacturer’s Internet channel is helpful to mitigate the bullwhip effect. Our results provide some useful managerial inspirations for the household manufacturer and retailers. Firstly, each channel should make their retail price with a suitable price adjustment speed in the stable region, and each time pricing cannot exceed the domain of attraction. Secondly, the manufacturer can adopt a more radical pricing strategy in their Internet channel to mitigate the bullwhip effect. Thirdly, the price adjustment should be reviewed and be appropriately reduced if the price adjustment is too large.


2019 ◽  
Vol 11 (15) ◽  
pp. 4237 ◽  
Author(s):  
Xiaodong Zhu ◽  
Lingfei Yu ◽  
Wei Li

The closed-loop supply chain management model is an effective way to promote sustainable economic development and environmental protection. Increasing the sales volume of remanufactured products to stimulate green growth is a key issue in the development of closed-loop supply chains. By designing an effective warranty strategy, customer’s perceived value can be enhanced and market demand can be stimulated. This study cuts through the warranty period of closed-loop supply chain products. Based on the perspective of consumer behavior, game theory is used to construct the optimal decision-making model for closed-loop supply chains. The optimal warranty decision making for new products and remanufactured products under centralized and decentralized decision-making models is discussed. Further, the impact of the closed-loop supply chain system with warranty services and the design of contract coordination is also shown. We show that consumer preference has a positive impact on the sales of remanufactured products and the profits of enterprises; with the extension of the new product and remanufacturing warranty period, the profit of the supply chain system first increases and then decreases, and the value is maximized at the extreme point in the manufacturer-led decision-making model. Furthermore, the leader gains higher profits with bargaining power, but the profit of the supply chain system under decentralized decision model is less than that of the centralized decision model, reflecting the double marginalization effect. The revenue sharing contract and the two-charge contract designed in this study coordinate the closed-loop supply chain system with warranty services, so that the member companies in the supply chain can achieve Pareto improvement.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jingjing Jiang ◽  
Aobo Lyu

This study aims to solve the credit problems in the supply chain commodity and currency circulation links from the perspective of the ledger, while the game model method has been adopted. The research firstly reviews the relationship between distributed ledger technology and the essential functions of currency. Then, by constructing two-agent single-period and multi-period game models in the entire supply chain, the researchers analysed the incentive mechanism and equilibrium solution of distributed nodes of Central Bank Digital Currency (CBDC). The results of this study include the incentive mechanism and optimization of distributed nodes based on licensed distributed ledger technology, which is an important issue that CBDC faces when performing currency functions. The implications of this study mainly cover the limitations of the underlying technology of the public chain and its reward mechanism in the supply chain management and provide support for the rationality of the CBDC issuance mechanism based on state-owned commercial banks, which provides a reference for the CBDC practice. The main value of the research not only serves the decision-making department of the CBDC issuance but also provides ideas on the operation mode of digital currency for the field of digital currency research.


Logistics ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 32
Author(s):  
Saša Malešević ◽  
Michael Lustenberger ◽  
Florian Spychiger

Improving current supply chains by using distributed ledger technology (DLT) has been a highly researched topic during the last years. Currently, there are numerous articles elaborating on how such technologies can theoretically improve supply chains. However, case studies of such concepts and their economic value are scarce. In order to bridge this gap, we collaborated with a regional label company to clarify how a distributed ledger technology would benefit their ecosystem. This work answers the question of how such a prototype would look and whether it adds value. By following design science research practices, we design two artifacts based on requirements gathered in 14 interviews and discuss the artifacts’ elements within an evaluation panel. Our findings show that a distributed ledger application for the regional label ecosystem should have an open and decentralized architecture giving all participants full access to the shared data while still providing security and privacy for sensitive data. Additionally, data capturing should be simple. However, such an application does not add sufficient economic value and is currently of no practical interest in the regional label ecosystem as the expenditure likely exceeds the benefit.


2020 ◽  
Vol 8 (5) ◽  
pp. 366
Author(s):  
Srdjan Vujičić ◽  
Nermin Hasanspahić ◽  
Maro Car ◽  
Leo Čampara

In recent years, many industries have adopted technology and digital systems to automate, expedite and secure specific processes. Stakeholders in maritime transport continue to exchange physical documents in order to conduct business. The monitoring of supply chain goods, communication among employees, environmental sustainability and longevity control, along with time framing, all create challenges to many industries. Everyday onboard work, such as cargo operations, navigation and various types of inspections in shipping, still requires paper documents and logs that need to be signed (and stamped). The conversion of traditional paper contracts into smart contracts, which can be digitalized and read through automation, provides a new wave of collaboration between eco systems across the shipping industry. Various data collected and stored on board ships could be used for scientific purposes. Distributed ledger technology (DLT) could be used to collect all those data and improve shipping operations by process expediting. It could eliminate the need to fill in various documents and logs and make operations safer and more environmentally friendly. Information about various important procedures onboard ships could be shared among all interested stakeholders. This paper considers the possible application of distributed ledger technology as an aid for the control of overboard discharge of wastewater from commercial ships. The intended outcome is that it could help protect the environment by sending data to relevant stakeholders in real time, thus providing information regarding the best discharge areas. The use of a structured communal data transference would ensure a consistent and accurate way to transmit data to all interested parties, and would eliminate the need to fill in various paper forms and logs. Wastewater overboard discharges would be properly monitored, recorded and measured, as distributed ledger technology would prevent any possibility of illegal actions and falsification of documents, thus ensuring environmental sustainability.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1086
Author(s):  
Christoph Kogler ◽  
Sophie Schimpfhuber ◽  
Clemens Eichberger ◽  
Peter Rauch

Intense international competition pushes the actors of wood supply chains to implement efficient wood supply chain management incorporating coordinated cost-saving strategies to remain competitive. In order to observe the effects of individual and coordinated decision making, mixed-integer programming models for forestry, round-wood transport, and the wood-based industry were developed and integrated. The models deal with operational planning issues regarding production, harvest, and transport and are solved sequentially for individual cost optimization of each wood supply chain actor as well as simultaneously by a combined model representing joint cost optimization in an integrated wood supply chain. This allows for the first time, benchmarking relative cost-saving potential of the wood procurement strategies coordinated transports, integrated supply chains, satellite stockyards, and higher truck payloads within a single case study setting. Based on case study data from southern Austria, results show the advantages of an integrated supply chain with a cost-saving potential of up to 24%. Higher truck payloads reinforce this potential and enable up to 40% savings compared to the predominant wood procurement situation in Central Europe. Wood supply chain integration for Central European circumstances seems to be feasible only for a limited consortium of a few companies, for example when restricted to a wood-buying syndicate supplying several industry plants or a few large forest enterprises, especially as both groups are commonly steering wood transport on their own. Consequently, further research on the challenging task of implementing integrated supply chains using the opportunities of digitalization to realize existing cost savings potential by deepening cooperation and intensifying information exchange is needed.


Sign in / Sign up

Export Citation Format

Share Document