scholarly journals Oenothera biennis l. Paradox

2021 ◽  
Vol 2 (216) ◽  
pp. 66-71
Author(s):  
Olga Kandelinskaya ◽  
◽  
Elena Grischenko ◽  
Swetlana Ogurtszova ◽  
Hleb Harbatsevich ◽  
...  

The seeds of the medicinal plant evening primrose (Oenothera biennis L.), having the invasive status in Belarus, are a source of pharmacologically valuable oil with a high content of polyunsaturated fatty acids (PUFA), including ?-linolenic acid. For the first time, the authors established that oil from O. biennis seeds collected in various regions of the republic is not inferior in quality to world analogues, is balanced in the composition of PUFA, and is characterized by a pronounced hypolipidemic and immunomodulatory effect. It is assumed that strategies developed to use this species as the basis for various purpose import-substituting phytopreparations will help limit its expansion in Belarus.

Antioxidants ◽  
2018 ◽  
Vol 7 (8) ◽  
pp. 108 ◽  
Author(s):  
Magdalena Timoszuk ◽  
Katarzyna Bielawska ◽  
Elżbieta Skrzydlewska

Evening primrose (Oenothera L.) is a plant belonging to the family Onagraceae, in which the most numerous species is Oenothera biennis. Some plants belonging to the genus Oenothera L. are characterized by biological activity. Therefore, studies were conducted to determine the dependence of biological activity on the chemical composition of various parts of the evening primrose, mainly leaves, stems, and seeds. Common components of all parts of the Oenothera biennis plants are fatty acids, phenolic acids, and flavonoids. In contrast, primrose seeds also contain proteins, carbohydrates, minerals, and vitamins. Therefore, it is believed that the most interesting sources of biologically active compounds are the seeds and, above all, evening primrose seed oil. This oil contains mainly aliphatic alcohols, fatty acids, sterols, and polyphenols. Evening primrose oil (EPO) is extremely high in linoleic acid (LA) (70–74%) and γ-linolenic acid (GLA) (8–10%), which may contribute to the proper functioning of human tissues because they are precursors of anti-inflammatory eicosanoids. EPO supplementation results in an increase in plasma levels of γ-linolenic acid and its metabolite dihomo-γ-linolenic acid (DGLA). This compound is oxidized by lipoxygenase (15-LOX) to 15-hydroxyeicosatrienoic acid (15-HETrE) or, under the influence of cyclooxygenase (COX), DGLA is metabolized to series 1 prostaglandins. These compounds have anti-inflammatory and anti-proliferative properties. Furthermore, 15-HETrE blocks the conversion of arachidonic acid (AA) to leukotriene A4 (LTA4) by direct inhibition of 5-LOX. In addition, γ-linolenic acid suppresses inflammation mediators such as interleukin 1β (IL-1β), interleukin 6 (IL-6), and cytokine - tumor necrosis factor α (TNF-α). The beneficial effects of EPO have been demonstrated in the case of atopic dermatitis, psoriasis, Sjögren’s syndrome, asthma, and anti-cancer therapy.


2021 ◽  
Vol 3 (217) ◽  
pp. 57-60
Author(s):  
Volha Kandelinskaya ◽  
◽  
Helena Grischenko ◽  
Anastasia Levkovich ◽  
Marina Anisovich ◽  
...  

Earlier we found for the first time that oil from the seeds of the invasive species O. biennis, collected in various regions of Belarus, is not inferior to world analogues in composition and content of polyunsaturated fatty acids (PUFAs), including ?-linolenic acid, and is characterized by hypolipidemic and immunostimulating effects. This work demonstrates the antioxidant and protective effect of the oil on human keratinocytes of the HaCaT line under simulated oxidative stress. A map of the distribution of O. biennis has been compiled and the stocks of seeds have been estimated in the regions of the republic. It is assumed that carrying out large-scale studies of O. biennis will help limit its expansion in Belarus, cultivate and standardize raw materials for the creation of domestic herbal medicines for medical purposes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna Goc ◽  
Aleksandra Niedzwiecki ◽  
Matthias Rath

AbstractThe strain SARS-CoV-2, newly emerged in late 2019, has been identified as the cause of COVID-19 and the pandemic declared by WHO in early 2020. Although lipids have been shown to possess antiviral efficacy, little is currently known about lipid compounds with anti-SARS-CoV-2 binding and entry properties. To address this issue, we screened, overall, 17 polyunsaturated fatty acids, monounsaturated fatty acids and saturated fatty acids, as wells as lipid-soluble vitamins. In performing target-based ligand screening utilizing the RBD-SARS-CoV-2 sequence, we observed that polyunsaturated fatty acids most effectively interfere with binding to hACE2, the receptor for SARS-CoV-2. Using a spike protein pseudo-virus, we also found that linolenic acid and eicosapentaenoic acid significantly block the entry of SARS-CoV-2. In addition, eicosapentaenoic acid showed higher efficacy than linolenic acid in reducing activity of TMPRSS2 and cathepsin L proteases, but neither of the fatty acids affected their expression at the protein level. Also, neither reduction of hACE2 activity nor binding to the hACE2 receptor upon treatment with these two fatty acids was observed. Although further in vivo experiments are warranted to validate the current findings, our study provides a new insight into the role of lipids as antiviral compounds against the SARS-CoV-2 strain.


1994 ◽  
Vol 74 (1) ◽  
pp. 129-131 ◽  
Author(s):  
Robert C. Roy ◽  
Peter H. White ◽  
Alex F. More ◽  
John G. Hendel ◽  
Robert Pocs ◽  
...  

The influence of transplanting time on the growth of evening primrose (Oenothera biennis L.) was investigated for 3 yr. Delaying transplanting reduced the yield of seed in two of these years. The amount of oil in the seed was not influenced by time of transplanting, and only in one year did the γ-linolenic acid content of the oil decrease with delays in transplanting. Key words: Evening primrose, transplanting date, oil content, γ-linolenic acid


Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1069
Author(s):  
Allen L. Rodgers ◽  
Roswitha Siener

In the pathogenesis of hypercalciuria and hyperoxaluria, n-6 polyunsaturated fatty acids (PUFAs) have been implicated by virtue of their metabolic links with arachidonic acid (AA) and prostaglandin PGE2. Studies have also shown that n-3 PUFAs, particularly those in fish oil—eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)—can serve as competitive substrates for AA in the n-6 series and can be incorporated into cell membrane phospholipids in the latter’s place, thereby reducing urinary excretions of calcium and oxalate. The present review interrogates several different types of study which address the question of the potential roles played by dietary PUFAs in modulating stone formation. Included among these are human trials that have investigated the effects of dietary PUFA interventions. We identified 16 such trials. Besides fish oil (EPA+DHA), other supplements such as evening primrose oil containing n-6 FAs linoleic acid (LA) and γ-linolenic acid (GLA) were tested. Urinary excretion of calcium or oxalate or both decreased in most trials. However, these decreases were most prominent in the fish oil trials. We recommend the administration of fish oil containing EPA and DHA in the management of calcium oxalate urolithiasis.


Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 499 ◽  
Author(s):  
Izabela Michalak ◽  
Marita Andrys ◽  
Mariusz Korczyński ◽  
Sebastian Opaliński ◽  
Bogusława Łęska ◽  
...  

The aim of the study was to evaluate the effect of Spirulina platensis, formulation containing microalgal extract, post-extraction residue, and formulation without algal extract (containing only emulsifier) on the content of FAs in the eggs of laying hens. The experiment was conducted on 90 laying hens (ISA Brown) as a completely randomized design. Hens were assigned to five experimental groups (six replicates). The FAs content in eggs was determined after 30, 60, 90, and 120 days of the experiment. There were no statistically significant differences in FA profiles after 30 days of the experiment. It was shown that after 60, 90, and 120 days of the experiment, the investigated additives had a significant impact on the content of such acids as: dodecanoic acid (C12:0), C15:0, nonadecanoic acid (C19:0), myristoleic acid (C14:1 n-5), α-linolenic acid (ALA, C18:3 n-3), DPA, C20:2 n-6, and decosahexaenoic acid (DHA C22:6 n-6). There were also significant differences in total PUFA n-3, PUFA n-6, and n-6/n-3 ratio in eggs. The obtained results suggest that the use of algae extract and emulsifier in laying hens nutrition has the greatest impact on the FA profile in the eggs.


2020 ◽  
Vol 161 ◽  
pp. 01093
Author(s):  
I.S. Khamagaeva ◽  
N.A. Zambalova ◽  
A.V. Tsyzhipova ◽  
A.T. Bubeev

The relationship between the content of polyunsaturated fatty acids (PUFAs) of flaxseed oil and the cholesterol-metabolizing activity of various strains of bifidobacteria was studied. The optimum dose of linseed oil in a nutrient medium for the cultivation of bifidobacteria was selected to provide high cholesterol destruction compared to the control. Of all the studied strains of bifidobacteria, the most pronounced destructive activity against cholesterol is displayed by the strain Bifidobacterium longum DK-100, which, with the biomass growth in a nutrient medium of linseed oil destroys 74% of the total cholesterol. When studying the fatty acid composition of the biomass of bifidobacteria, the oleic acid was found to predominate among monounsaturated fatty acids, and the α-linolenic acid to prevail among polyunsaturated fatty acids, that amounted to 44-45%. A decrease in the content of linolenic acid during the cultivation of bifidobacteria was noted, which is probably due to their participation of bifidobacteria in the metabolism. As a result of the studies, the optimum conditions for the cultivation of bifidobacteria were selected and the technological parameters of producing dietary supplements were justified.


2009 ◽  
Vol 2009 ◽  
pp. 1-7 ◽  
Author(s):  
Ingeborg Hanbauer ◽  
Ignacio Rivero-Covelo ◽  
Ekrem Maloku ◽  
Adam Baca ◽  
Qiaoyan Hu ◽  
...  

Feeding mice, over 3 generations, an equicaloric diet in which α-linolenic acid, the dietary precursor of n-3 polyunsaturated fatty acids, was substituted by linoleic acid, the dietary precursor of n-6 polyunsaturated fatty acids, significantly increased body weight throughout life when compared with standard diet-fed mice. Adipogenesis observed in the low n-3 fatty acid mice was accompanied by a 6-fold upregulation of stearyl-coenzyme A desaturase 1 (Scd1), whose activity is correlated to plasma triglyceride levels. In total liver lipid and phospholipid extracts, the sum of n-3 fatty acids and the individual longer carbon chain acids, eicosapentaenoic acid (20:5n3), docosapentaenoic acid (22:5n3), and docosahexaenoic acid (22:6n3) were significantly decreased whereas arachidonic acid (20:4n6) was significantly increased. In addition, low n-3 fatty acid-fed mice had liver steatosis, heart, and kidney hypertrophy. Hence, reducing dietary α-linolenic acid, from 1.02 energy% to 0.16 energy% combined with raising linoleic acid intake resulted in obesity and had detrimental consequences on organ function.


Sign in / Sign up

Export Citation Format

Share Document