Perspective of molecular immune response of SARS-COV-2 infection

2020 ◽  
Vol 9 (1) ◽  
pp. 58-66
Author(s):  
Martina Kurnia Rohmah ◽  
Arif Rahman Nurdianto

COVID-19 is a type of Pneumonia caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). When COVID-19 arise in Wuhan China and rapidly spread throughout to the World, we need to learn how pathogenesis and immune responses occur in the bodies in more detail. COVID-19 is the third Severe Respiratory Disease outbreak caused by the Coronavirus in the past two decades after Severe Acute Respiratory Syndrome (SARS) in the 2002 and Middle East Respiratory Syndrome (MERS) in 2012. The Articles from PUBMED and Research Gate were searched for studies on the immune response of COVID-19 infection by SARS-CoV-2. SARS-CoV-2 increases the number of neutrophils, suppresses IFN, increases the activity of Th1/Th17, B cells, CD8+ and CD4+, and causes cytokine storms especially pro-inflammatory cytokines which can increase respiration disorders and multi-organ damage. This review tries to explain about pathogenesis and immune responses of COVID-19 to provide a reference in designing the appropriate immune intervention for treatment and therapeutic such as drug or vaccine based on the recent research progress SARS-CoV-2 and previous studies about SARS CoV and MERS CoV.

2019 ◽  
Vol 12 (2) ◽  
pp. 83-104
Author(s):  
Manaf AlMatar ◽  
Essam A. Makky ◽  
Husam AlMandeal ◽  
Emel Eker ◽  
Begüm Kayar ◽  
...  

Background:Mycobacterium tuberculosis (Mtb) is considered as one of the most efficacious human pathogens. The global mortality rate of TB stands at approximately 2 million, while about 8 to 10 million active new cases are documented yearly. It is, therefore, a priority to develop vaccines that will prevent active TB. The vaccines currently used for the management of TB can only proffer a certain level of protection against meningitis, TB, and other forms of disseminated TB in children; however, their effectiveness against pulmonary TB varies and cannot provide life-long protective immunity. Based on these reasons, more efforts are channeled towards the development of new TB vaccines. During the development of TB vaccines, a major challenge has always been the lack of diversity in both the antigens contained in TB vaccines and the immune responses of the TB sufferers. Current efforts are channeled on widening both the range of antigens selection and the range of immune response elicited by the vaccines. The past two decades witnessed a significant progress in the development of TB vaccines; some of the discovered TB vaccines have recently even completed the third phase (phase III) of a clinical trial.Objective:The objectives of this article are to discuss the recent progress in the development of new vaccines against TB; to provide an insight on the mechanism of vaccine-mediated specific immune response stimulation, and to debate on the interaction between vaccines and global interventions to end TB.


Toxins ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 426
Author(s):  
Maria Lopez Chiloeches ◽  
Anna Bergonzini ◽  
Teresa Frisan

The idea that bacterial toxins are not only killers but also execute more sophisticated roles during bacteria–host interactions by acting as negotiators has been highlighted in the past decades. Depending on the toxin, its cellular target and mode of action, the final regulatory outcome can be different. In this review, we have focused on two families of bacterial toxins: genotoxins and pore-forming toxins, which have different modes of action but share the ability to modulate the host’s immune responses, independently of their capacity to directly kill immune cells. We have addressed their immuno-suppressive effects with the perspective that these may help bacteria to avoid clearance by the host’s immune response and, concomitantly, limit detrimental immunopathology. These are optimal conditions for the establishment of a persistent infection, eventually promoting asymptomatic carriers. This immunomodulatory effect can be achieved with different strategies such as suppression of pro-inflammatory cytokines, re-polarization of the immune response from a pro-inflammatory to a tolerogenic state, and bacterial fitness modulation to favour tissue colonization while preventing bacteraemia. An imbalance in each of those effects can lead to disease due to either uncontrolled bacterial proliferation/invasion, immunopathology, or both.


2020 ◽  
Vol 13 (10) ◽  
pp. 277 ◽  
Author(s):  
Anastasiia I. Petushkova ◽  
Andrey A. Zamyatnin

Papain-like proteases (PLpro) of coronaviruses (CoVs) support viral reproduction and suppress the immune response of the host, which makes CoV PLpro perspective pharmaceutical targets. Their inhibition could both prevent viral replication and boost the immune system of the host, leading to the speedy recovery of the patient. Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the third CoV outbreak in the last 20 years. Frequent mutations of the viral genome likely lead to the emergence of more CoVs. Inhibitors for CoV PLpro can be broad-spectrum and can diminish present and prevent future CoV outbreaks as PLpro from different CoVs have conservative structures. Several inhibitors have been developed to withstand SARS-CoV and Middle East respiratory syndrome CoV (MERS-CoV). This review summarizes the structural features of CoV PLpro, the inhibitors that have been identified over the last 20 years, and the compounds that have the potential to become novel effective therapeutics against CoVs in the near future.


2020 ◽  
Vol 3 (2) ◽  
pp. 165-176
Author(s):  
Cássio Santana Meira ◽  
Vinícius Pinto Costa Rocha ◽  
Iasmim Diniz Orge ◽  
Danielle Devequi Gomes Nunes ◽  
Emanuelle de Souza Santos ◽  
...  

Coronavirus disease 2019 (COVID-19) emerged in Wuhan, China, in December 2019 and quickly spread worldwide becoming a global health problem unprecedented. The infection is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that is characterized as a RNA virus with an envelope derived from host cell with glycoprotein spikes, appearing like a crown-like external structure under electron microscope. Due to the aggressive spread profile of SARS-CoV-2, the scientific community is under pressure to generate knowledge about the morphology of the virus and the immune response against SARS-CoV-2, in order to generate useful information for the development of vaccines and methods of immunological diagnosis. Previous knowledge about other coronaviruses, such as SARS-CoV-1 and MERS-CoV, were the pillars for understanding the immune response of SARS-CoV-2. Until now, we know that the anti-SARS-CoV-2 immune response in the host involves mechanisms related to innate immunity, activation of CD4+ and CD8+ T cells and production of antibodies (IgA, IgG and IgM) against the virus. In spite of being a new pathogen, the literature on SARS-CoV-2 has increased dramatically in the past few months, especially in the immunology field. Here, we review the literature on SARS-CoV-2 immunology, focusing on the innate and adaptative immune responses.  


2020 ◽  
Author(s):  
Ademola Samuel Ojo ◽  
Paul Toluwatope Okediji ◽  
Ayotemide P. Akin-Onitolo ◽  
Olusegun S. Ojo ◽  
Oluyinka Oladele Opaleye

This paper attempts to answer the question: are recovered COVID-19 patients protected from re-infection? This review draws evidence from comparisons between immune responses to Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and Middle East Respiratory Syndrome coronavirus (MERS-CoV), which are phylogenetically closely related to Severe Acute Respiratory Syndrome coronavirus type 2 (SARS-CoV-2). Relevant studies were identified and reviewed based on searches conducted using PubMed. Full-text original studies on short- and long-term immune responses to human coronaviruses were included. The immune dysfunction and clinical manifestations in SARS-CoV-2, SARS-CoV, and MERS-CoV were found to be similar. Infections with SARS-CoV and MERS-CoV trigger the production of antibodies and memory B- and T-cells. Serum IgM is detectable within 7 days, peak at 21-30 days and become undetectable by 180 days. IgG is detectable at 7 days, peak at 90 days, and decline to undetected levels by 2 years post-infection. Memory B- and T-cells persist in the body for up to 2 and 6 years respectively after initial infection. The short-term risk of SARS-CoV-2 re-infection is predictably low based on similarities in the short term adaptive immune response to kindred coronaviruses. However, more research will be required to determine the long-term adaptive immunity to SARS-CoV-2 and factors that may influence the existence of short- and long-term immunity against the virus.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hossein Ansariniya ◽  
Seyed Mohammad Seifati ◽  
Erfan Zaker ◽  
Fateme Zare

Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and Coronavirus Disease 2019 (COVID-19) infections are the three epidemiological diseases caused by the Coronaviridae family. Perceiving the immune responses in these infections and the escape of viruses could help us design drugs and vaccines for confronting these infections. This review investigates the innate and adaptive immune responses reported in the infections of the three coronaviruses SARS, MERS, and COVID-19. Moreover, the present study can trigger researchers to design and develop new vaccines and drugs based on immune system responses. In conclusion, due to the need for an effective and efficient immune stimulation against coronavirus, a combination of several strategies seems necessary for developing the vaccine.


2005 ◽  
Vol 79 (22) ◽  
pp. 13915-13923 ◽  
Author(s):  
Wing-pui Kong ◽  
Ling Xu ◽  
Konrad Stadler ◽  
Jeffrey B. Ulmer ◽  
Sergio Abrignani ◽  
...  

ABSTRACT Although the initial isolates of the severe acute respiratory syndrome (SARS) coronavirus (CoV) are sensitive to neutralization by antibodies through their spike (S) glycoprotein, variants of S have since been identified that are resistant to such inhibition. Optimal vaccine strategies would therefore make use of additional determinants of immune recognition, either through cellular or expanded, cross-reactive humoral immunity. Here, the cellular and humoral immune responses elicited by different combinations of gene-based and inactivated viral particles with various adjuvants have been assessed. The T-cell response was altered by different prime-boost immunizations, with the optimal CD8 immunity induced by DNA priming and replication-defective adenoviral vector boosting. The humoral immune response was enhanced most effectively through the use of inactivated virus with adjuvants, either MF59 or alum, and was associated with stimulation of the CD4 but not the CD8 response. The use of inactivated SARS virus with MF59 enhanced the CD4 and antibody response even after gene-based vaccination. Because both cellular and humoral immune responses are generated by gene-based vaccination and inactivated viral boosting, this strategy may prove useful in the generation of SARS-CoV vaccines.


2008 ◽  
Vol 3 (4) ◽  
pp. 254-265 ◽  
Author(s):  
P. A. McCombe ◽  
S. J. Read

Inflammatory and immune responses play important roles following ischaemic stroke. Inflammatory responses contribute to damage and also contribute to repair. Injury to tissue triggers an immune response. This is initiated through activation of the innate immune system. In stroke there is microglial activation. This is followed by an influx of lymphocytes and macrophages into the brain, triggered by production of pro-inflammatory cytokines. This inflammatory response contributes to further tissue injury. There is also a systemic immune response to stroke, and there is a degree of immunosuppression that may contribute to the stroke patient's risk of infection. This immunosuppressive response may also be protective, with regulatory lymphocytes producing cytokines and growth factors that are neuroprotective. The specific targets of the immune response after stroke are not known, and the details of the immune and inflammatory responses are only partly understood. The role of inflammation and immune responses after stroke is twofold. The immune system may contribute to damage after stroke, but may also contribute to repair processes. The possibility that some of the immune response after stroke may be neuroprotective is exciting and suggests that deliberate enhancement of these responses may be a therapeutic option.


2018 ◽  
Vol 8 (1) ◽  
pp. 194-201
Author(s):  
KM. Terlikowska ◽  
MA. Strzyż-Skalij ◽  
K. Kryński ◽  
M. Osmólska ◽  
Z. Łada ◽  
...  

Ovarian cancer is the most threatening cause of death among gynecologic malignancies and represents the fifth leading cause of death from all cancers for women. Research reveals that ovarian cancer patients exhibit significant immune responses against the tumor. In this review of the current literature chiefly the interaction of ovarian cancer tumor cells and the immune system is discussed. There is increasingly growing evidence that pro-inflammatory cytokines are involved in intricate complex of mechanisms responsible for tumorigenesis, and delicate balance between pro- and anti-inflammatory cytokines is critical for the antitumor host immune response.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Mauricio M. Rodrigues ◽  
Ana Carolina Oliveira ◽  
Maria Bellio

In the past ten years, studies have shown the recognition ofTrypanosoma cruzi-associated molecular patterns by members of the Toll-like receptor (TLR) family and demonstrated the crucial participation of different TLRs during the experimental infection with this parasite. In the present review, we will focus on the role of TLR-activated pathways in the modulation of both innate and acquired immune responses toT. cruziinfection, as well as discuss the state of the art of vaccine research and development against the causative agent of Chagas disease (or American trypanosomiasis).


Sign in / Sign up

Export Citation Format

Share Document