Does the Development of Vaccines Advance Solutions for Tuberculosis?

2019 ◽  
Vol 12 (2) ◽  
pp. 83-104
Author(s):  
Manaf AlMatar ◽  
Essam A. Makky ◽  
Husam AlMandeal ◽  
Emel Eker ◽  
Begüm Kayar ◽  
...  

Background:Mycobacterium tuberculosis (Mtb) is considered as one of the most efficacious human pathogens. The global mortality rate of TB stands at approximately 2 million, while about 8 to 10 million active new cases are documented yearly. It is, therefore, a priority to develop vaccines that will prevent active TB. The vaccines currently used for the management of TB can only proffer a certain level of protection against meningitis, TB, and other forms of disseminated TB in children; however, their effectiveness against pulmonary TB varies and cannot provide life-long protective immunity. Based on these reasons, more efforts are channeled towards the development of new TB vaccines. During the development of TB vaccines, a major challenge has always been the lack of diversity in both the antigens contained in TB vaccines and the immune responses of the TB sufferers. Current efforts are channeled on widening both the range of antigens selection and the range of immune response elicited by the vaccines. The past two decades witnessed a significant progress in the development of TB vaccines; some of the discovered TB vaccines have recently even completed the third phase (phase III) of a clinical trial.Objective:The objectives of this article are to discuss the recent progress in the development of new vaccines against TB; to provide an insight on the mechanism of vaccine-mediated specific immune response stimulation, and to debate on the interaction between vaccines and global interventions to end TB.

2020 ◽  
Vol 9 (1) ◽  
pp. 58-66
Author(s):  
Martina Kurnia Rohmah ◽  
Arif Rahman Nurdianto

COVID-19 is a type of Pneumonia caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). When COVID-19 arise in Wuhan China and rapidly spread throughout to the World, we need to learn how pathogenesis and immune responses occur in the bodies in more detail. COVID-19 is the third Severe Respiratory Disease outbreak caused by the Coronavirus in the past two decades after Severe Acute Respiratory Syndrome (SARS) in the 2002 and Middle East Respiratory Syndrome (MERS) in 2012. The Articles from PUBMED and Research Gate were searched for studies on the immune response of COVID-19 infection by SARS-CoV-2. SARS-CoV-2 increases the number of neutrophils, suppresses IFN, increases the activity of Th1/Th17, B cells, CD8+ and CD4+, and causes cytokine storms especially pro-inflammatory cytokines which can increase respiration disorders and multi-organ damage. This review tries to explain about pathogenesis and immune responses of COVID-19 to provide a reference in designing the appropriate immune intervention for treatment and therapeutic such as drug or vaccine based on the recent research progress SARS-CoV-2 and previous studies about SARS CoV and MERS CoV.


Parasitology ◽  
2000 ◽  
Vol 120 (7) ◽  
pp. 25-42 ◽  
Author(s):  
E. CLAEREBOUT ◽  
J. VERCRUYSSE

The present review discusses the immune responses to gastrointestinal nematodes in cattle and the different immunological and parasitological parameters used to assess acquired immunity. Measuring acquired immunity to gastrointestinal nematodes in cattle (e.g. for the evaluation of candidate parasite vaccines) is hampered by the limited understanding of bovine immune responses against gastrointestinal parasites. In this paper the available data on protective immunity against gastrointestinal nematodes, and especially Ostertagia ostertagi, in cattle are compared with the current knowledge of protective immune responses against gastrointestinal nematodes in rodent models and small ruminants. In contrast to the immune response in mice, which is controlled by T helper 2 (Th2) lymphocytes and results in mast cell- or goblet cell- mediated expulsion of adult worms, bovine immune responses to O. ostertagi do not show a clear Th2 cytokine profile, nor do they result in rapid expulsion of the parasite. The first manifestation of immunity to O. ostertagi in calves is a reduction of worm fecundity, possibly regulated by the local IgA response. Worm numbers are only reduced after a prolonged period of host–parasite contact, and there are indications that O. ostertagi actively suppresses the host's immune response. Until the mechanisms of protective immunity against O. ostertagi are revealed, the use of immunological parameters to estimate acquired immunity in cattle is based on their correlation with parasitological parameters and on extrapolation from rodent and small ruminant models. Assessing the resistance of calves against a challenge infection by means of parasitological parameters is probably still the most accurate way to measure acquired immunity against gastrointestinal nematodes.


2021 ◽  
Author(s):  
Sarah S. Eggleston ◽  
Steven Phipps ◽  
Oliver Bothe ◽  
Helen V. McGregor ◽  
Belen Martrat ◽  
...  

<p>The past two thousand years is a key interval for climate science. This period encompasses both the era of human-induced global warming and a much longer interval when changes in Earth’s climate were governed principally by natural drivers and unforced variability. Since 2009, the Past Global Changes (PAGES) 2k Network has brought together hundreds of scientists from around the world to reconstruct and understand the climate of the Common Era using open and collaborative approaches to palaeoclimate science, including virtual meetings. The third phase of the network will end in December 2021. Here we highlight some key outputs of PAGES 2k and present the major themes and scientific questions emerging from recent surveys of the community. We explore how these might boost a new phase of PAGES 2k or a successor project(s). This year we will further reach out to the community through Town Hall consultations, vEGU and other meetings, and a PAGES 2k global webinar series. The aim of these activities is to foster development of post-2021 community-led PAGES initiatives that connect past and present climate.</p>


2008 ◽  
Vol 26 (20) ◽  
pp. 3445-3455 ◽  
Author(s):  
John M. Kirkwood ◽  
Ahmad A. Tarhini ◽  
Monica C. Panelli ◽  
Stergios J. Moschos ◽  
Hassane M. Zarour ◽  
...  

PurposeImmunotherapy has a long history with striking but limited success in patients with melanoma. To date, interleukin-2 and interferon-alfa2b are the only approved immunotherapeutic agents for melanoma in the United States.DesignTumor evasion of host immune responses, and strategies for overcoming tumor-induced immunosuppression are reviewed. Several novel immunotherapies currently in worldwide phase III clinical testing for melanoma are discussed.ResultsThe limitations of immunotherapy for melanoma stem from tumor-induced mechanisms of immune evasion that render the host tolerant of tumor antigens. For example, melanoma inhibits the maturation of antigen-presenting cells, preventing full T-cell activation and downregulating the effector antitumor immune response. New immunotherapies targeting critical regulatory elements of the immune system may overcome tolerance and promote a more effective antitumor immune response. These include monoclonal antibodies that block the cytotoxic T lymphocyte-associated antigen 4 (CTLA4) and toll-like receptor 9 (TLR9) agonists. Blockade of CTLA4 prevents inhibitory signals that downregulate T-cell activation. TLR9 agonists stimulate dendritic cell maturation and ultimately induce a more effective immune response. These approaches have been shown to stimulate acute immune activation with concomitant appearance of transient adverse events mediated by the immune system. The pattern and duration of immune responses associated with these new modalities differ from those associated with cytokines and cytotoxic agents. In addition, vaccines are being developed that may ultimately target melanoma either alone or in combination with these immunomodulatory therapies.ConclusionThe successes of cytokine and interferon therapy of melanoma, coupled with an array of new approaches, are generating new enthusiasm for the immunotherapy of melanoma.


2003 ◽  
Vol 10 (4) ◽  
pp. 637-642 ◽  
Author(s):  
C. M. Ausiello ◽  
R. Lande ◽  
P. Stefanelli ◽  
C. Fazio ◽  
G. Fedele ◽  
...  

ABSTRACT The relative value of antibodies and/or T-cell immune responses to Bordetella pertussis antigens in the immunity induced by acellular pertussis (aP) vaccines is still an open issue, probably due to the incomplete knowledge on the mechanisms of protective immunity to pertussis. The relevance of T-cell immune responses in protection from pertussis has been demonstrated in murine and human models of infection; thus, in this study, the ability of different vaccine preparations of three component (pertussis toxin, filamentous hemagglutinin, and pertactin) aP vaccines to induce T-cell responses was investigated in mice. All vaccine preparations examined passed the immunogenicity control test, based on antibody titer assessment, according to European Pharmacopoeia standards, and protected mice from B. pertussis intranasal challenge, but not all preparations were able to prime T cells to pertussis toxin, the specific B. pertussis antigen. In particular, one vaccine preparation was unable to induce proliferation and gamma interferon (IFN-γ) production while the other two gave borderline results. The evaluation of T-cell responses to pertussis toxin antigen may provide information on the protective immunity induced by aP vaccines in animal models. Considering the critical role of the axis interleukin-12-IFN-γ for protection from pertussis, our results suggest that testing the induction of a key protective cytokine such as IFN-γ could be an additional tool for the evaluation of the immune response induced by aP vaccines.


Cholesterol ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Maryam Barzin ◽  
Farhad Hosseinpanah ◽  
Hamidreza Saber ◽  
Parvin Sarbakhsh ◽  
Kobra Nakhoda ◽  
...  

Aims. To investigate the trend of metabolic syndrome and its components in Tehran children and adolescents during a median followup of 6.6 years. Methods. Data from 1999–2001 (phase I), 2002–2005 (phase II), and 2006–2008 (phase III) of the Tehran, Lipid and Glucose Study were analyzed (; age 6–18 years) for the trend of metabolic syndrome (MetS) and its components. General estimation equation (GEE) models were used to analyze this correlated data. Results. The crude prevalence of MetS for boys at baseline was 13.2%, which increased to 16.4% in the third phase. In girls, the prevalence of Mets decreased from 11.8% at baseline to 6% during followup. The odd ratios (OR) of obesity over the whole study period were raised in both sexes. The OR of abdominal obesity increased significantly in boys, but no change was observed in girls. No significant OR was observed in boys, while OR for MetS was shown to have a decreasing trend in girls during the followup. In the three time points, the ORs of MetS decreased significantly in girls but no significant difference was observed in boys. Conclusion. Inspite of increasing trend for obesity in both sexes, the trend of MetS decreased in girls and was relatively stable in boys, in Tehranian children, and adolescents.


2020 ◽  
Vol 3 (2) ◽  
pp. 165-176
Author(s):  
Cássio Santana Meira ◽  
Vinícius Pinto Costa Rocha ◽  
Iasmim Diniz Orge ◽  
Danielle Devequi Gomes Nunes ◽  
Emanuelle de Souza Santos ◽  
...  

Coronavirus disease 2019 (COVID-19) emerged in Wuhan, China, in December 2019 and quickly spread worldwide becoming a global health problem unprecedented. The infection is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that is characterized as a RNA virus with an envelope derived from host cell with glycoprotein spikes, appearing like a crown-like external structure under electron microscope. Due to the aggressive spread profile of SARS-CoV-2, the scientific community is under pressure to generate knowledge about the morphology of the virus and the immune response against SARS-CoV-2, in order to generate useful information for the development of vaccines and methods of immunological diagnosis. Previous knowledge about other coronaviruses, such as SARS-CoV-1 and MERS-CoV, were the pillars for understanding the immune response of SARS-CoV-2. Until now, we know that the anti-SARS-CoV-2 immune response in the host involves mechanisms related to innate immunity, activation of CD4+ and CD8+ T cells and production of antibodies (IgA, IgG and IgM) against the virus. In spite of being a new pathogen, the literature on SARS-CoV-2 has increased dramatically in the past few months, especially in the immunology field. Here, we review the literature on SARS-CoV-2 immunology, focusing on the innate and adaptative immune responses.  


2018 ◽  
Vol 4 (4) ◽  
pp. 128 ◽  
Author(s):  
Thais Pereira ◽  
Patrícia de Barros ◽  
Luciana Fugisaki ◽  
Rodnei Rossoni ◽  
Felipe Ribeiro ◽  
...  

The use of invertebrates for in vivo studies in microbiology is well established in the scientific community. Larvae of Galleria mellonella are a widely used model for studying pathogenesis, the efficacy of new antimicrobial compounds, and immune responses. The immune system of G. mellonella larvae is structurally and functionally similar to the innate immune response of mammals, which makes this model suitable for such studies. In this review, cellular responses (hemocytes activity: phagocytosis, nodulation, and encapsulation) and humoral responses (reactions or soluble molecules released in the hemolymph as antimicrobial peptides, melanization, clotting, free radical production, and primary immunization) are discussed, highlighting the use of G. mellonella as a model of immune response to different human pathogenic microorganisms.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Mauricio M. Rodrigues ◽  
Ana Carolina Oliveira ◽  
Maria Bellio

In the past ten years, studies have shown the recognition ofTrypanosoma cruzi-associated molecular patterns by members of the Toll-like receptor (TLR) family and demonstrated the crucial participation of different TLRs during the experimental infection with this parasite. In the present review, we will focus on the role of TLR-activated pathways in the modulation of both innate and acquired immune responses toT. cruziinfection, as well as discuss the state of the art of vaccine research and development against the causative agent of Chagas disease (or American trypanosomiasis).


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Aline F. Teixeira ◽  
Luis G. V. Fernandes ◽  
Antonio Souza Filho ◽  
Gisele O. Souza ◽  
Silvio A. Vasconcellos ◽  
...  

Leptospirosis is a neglected tropical disease caused by pathogenicLeptospiraspp. The lack of an effective vaccine favors the increase of the disease. Currently, surface-exposed proteins are the main targets for the search of vaccine candidates. In this study, we examined whether the surface Lsa46 and Lsa77 proteins, previously identified as laminin and plasminogen binding proteins, have the capacity of inducing protection and sterilizing immunity against challenge with virulentLeptospirain hamster model. Animals were subcutaneously immunized with Lsa46, Lsa77, or a combination of both in Alum adjuvant and challenged intraperitoneally withL. interrogansserovar Kennewicki strain Pomona Fromm. Hamster immunization with Lsa46 or Lsa77 or both promoted a strong IgG response. Th2- and Th1-biased immune responses were observed when Lsa46 and Lsa77 were individually administered, respectively, as detected by the IgG1/IgG2/3 ratio. Immunized hamsters with the combined proteins induced a Th1-biased immune response. Although the immunization with Lsa46 and Lsa77 stimulated protective immunity with reduction of bacterial burden, when compared to animals individually immunized with the proteins, the data was not statistically significant. Thus, although promising, more studies are needed before the role of these proteins in stimulating sterilizing immunity in mammals is conclusively determined.


Sign in / Sign up

Export Citation Format

Share Document