scholarly journals Induksi Mutasi Fisik dengan Iradiasi Sinar Gamma pada Kunyit (Curcuma domestica Val.)

2015 ◽  
Vol 5 (2) ◽  
pp. 84
Author(s):  
Yahidah Rosyidah Anshori ◽  
Syarifah Iis Aisyah ◽  
Latifah K Darusman

<p>ABSTRACT</p><p>Turmeric  is  a  spice plant  and  potential  as a major  ingredient  of  functional food. Turmeric contains curcumin, an active compound which gives the yellow color from its rhizomes that provides health benefits. Curcumin is an antioxidant and acts as an anti-cholesterol as well as a medicine for tumors, cancer, hypertension, hyperglycemia, and rheumatic heart disease. Limited supply of simplicialevel of curcumin based on market standards and the low genetic variability of turmeric as a source for conventional breeding makes this research valuable to be  conducted.  The purposes of this study were  to  obtain  LD50 dose  and  turmeric  crop  yield  variability  due  to  the  changes  in physical mutation  induced  by  gamma-ray  irradiation.  An  acute  single iradiation  was  given  to  using  the universal panoramic irradiator with 11 different dose rates,  The plants  then were cultivated in vivo. The  growth observation  on  turmeric  was  observed  on  vegetative  traits  qualitatively and quantitatively. In this study, the LD50 dose of turmeric was 47.26 Gy. The plant’s vegetative growth tends  to  decelerate  with  the  increase  of irradiation  doses.  The  high  variabillity  growth  for   leaf number  occured  on 50  Gy  of  dose.  Morphological  changes  occured  in  the  form  of  pseudo-stem shape  due  to  irradiation  doses  of  50  and  60  Gy.  Most  leaf  surface discoloration  and  leaf deformation occured at 50 and 70 Gy, and stunted growth occured at 60 and 70 Gy.</p><p>Keywords: curcumin, iradiation, LD50, turmeric</p><p> </p><p>ABSTRAK</p><p>Kunyit merupakan tanaman rempah yang potensial sebagai bahan utama pangan fungsional. Rimpang kunyit mengandung senyawa aktif utama yaitu kurkumin yang memberikan warna kuning pada  rimpang  juga  memberikan manfaat  untuk  kesehatan.  Kurkumin  bersifat  antioksidan  dan berperan sebagai  antikolesterol,  obat  tumor,  kanker,  obat  hipertensi,  hiperglikemia, penyakit  hati serta  rematik.  Keterbatasan  penyediaan  simplisia  yang mempunyai  kandungan  kurkumin  sesuai standar  pasar  serta  rendahnya keragaman  genetik  kunyit  sebagai  bahan  seleksi  pemuliaan konvensional menjadikan penelitian ini penting untuk dilakukan. Tujuan penelitian ini adalah untuk mendapatkan  dosis  LD50  serta  menghasilkan  perubahan  keragaan tanaman  kunyit  akibat  induksi mutasi  fisik  melalui  iradiasi  sinar  gamma. Iradiasi  dilakukan  secara  tunggal  (acute  irradiation) menggunakan Iradiator Panorama Serba Guna (IRPASENA) dengan 11 taraf dosis yang berbeda dan tanaman  yang  telah  diradiasi  dibudidayakan  secara  in  vivo. Pengamatan  pertumbuhan  tanaman kunyit  dilakukan  pada  karakter vegetatif secara  kuantitatif  dan  kualitatif.  Pada  penelitian  ini, didapatkan  LD50 kunyit  yaitu  pada  dosis  47.26  Gy.  Pertumbuhan  vegetatif  tanaman cenderung mengalami  perlambatan  dengan  semakin  meningkatnya  dosis iradiasi.  Keragaman  tertinggi pertumbuhan jumlah daun terdapat pada aplikasi dosis 50 Gy. Perubahan morfologi berupa bentuk pangkal  batang  semu  terjadi pada  tanaman  akibat  iradiasi  dosis  50  dan  60  Gy,  perubahan warna sebagian permukaan daun dan terjadi pada 50 dan 70 Gy, perubahan bentuk daun terjadi pada 50 dan 70 Gy, serta pertumbuhan tanaman yang kerdil terjadi pada tanaman 60 dan 70 Gy.</p><p>Kata kunci: iradiasi, kunyit, kurkumin, LD50</p>

2015 ◽  
Vol 15 (1) ◽  
pp. 17
Author(s):  
Endang Sri Ratna ◽  
Kemas Usman ◽  
Indah Arastuti ◽  
Dadan Hindayana

Effect of gamma irradiation [60Co] against Bactrocera carambolae Drew & Hancock in vitro and in vivo. Bactrocera carambolae Drew & Hancock is one of the most important pests on guava fruit. According to a quarantine regulation in export-import commodities, irradiation treatment is a suitable methods for eradicating infested organism, which is relatively safe for the environment. The aim of this research was to determine mortality doses and an effective dose of [60Co] gamma ray irradiation for the eradication purpose, and its implication on the survival of fruit fly B. carambolae. Two irradiation methods of in vitro dan in vivo were carried out, by exposing egg and 3rd instar larvae of B. carambolae obtained from the laboratory reared insect. Eleven doses of gamma ray irradiation of 0, 30, 50, 75, 100, 125, 150, 175, 200, 300, 450, and 600 Gy were applied, respectively. The level of 99% fruit fly mortality was estimated by the value of LD99 using probit analysis and the number of larvae, pupae and adult survival were evaluated by analysis of variance (ANOVA), and the means compared by Tukey’s test, at 5% of significance level. These result showed that the effective lethal dose (LD99) of irradiation that could be successful to eradicate eggs and 3rd instar larvae in vitro were 2225 and 2343 Gy and in vivo were 3165 dan 3177 Gy, respectively. Almost all of the treated larvae survived and developed to pupae, therefore only the minimum irradiation dose of 30 Gy allowed the pupae to develop into adults.


2019 ◽  
Vol 23 (2) ◽  
pp. 242
Author(s):  
Novi Kusumaning Astuti ◽  
Suputa Suputa ◽  
Nugroho Susetyo Putra ◽  
Murni Indarwatmi

Snake fruit (Salacca zalacca) is a unique fruit and it has decadent prospects to be developed as an export commodity. Nevertheless, oriental fruit fly, Bactrocera dorsalis Hendel seems to decrease the quantity and quality of this fruit. On the other side, irradiation has been developed as a standard quarantine treatment to disinfest fruit fly on fruit. The objective of this research was to determine impact of irradiation by Cobalt-60 gamma-ray on the development and survivorship of eggs and the third instar of fruitfly larvae using in-vitro and in-vivo approaches and minimum dose of Cobalt-60 gamma rays applied for snake fruit. Six doses of gamma-ray, i.e. 0 (control), 25, 50, 75, 100, 125 and 150 Gy were used in this experiment. The results showed that Cobalt-60 disturbed development and survivor rate of B. dorsalis. The development of eggs into pupa was failed when treated with Cobalt-60 at any doses, while the third instar larvae failed to become adult when irradiated with 75, 100 and 150 Gy of gamma-ray. The impacts were increased with the increment of dose. Furthermore, impact of gamma-ray irradiation was greater on eggs compared to the third instar of larvae. The minimum dose of irradiation to prevent adults emerge was 118 Gy.


2016 ◽  
Vol 43 (3) ◽  
pp. 235
Author(s):  
Arrin Rosmala ◽  
Nurul Khumaida ◽  
Dewi Sukma

<p>ABSTRACT</p><p>Handeuleum (Graptophyllum pictum L.Griff) is a medicinal plant widely used as a traditional medicine due to its benefecial content. Therefore, it should be developed as one of the leading Indonesian medicinal plants. The purpose of this research was to study the effect of gamma ray irradiation on morphological alteration and growth of Handeuleum accession from Bogor. The doses of gamma rays were 0, 15, 30, 45, 60, 75, 90, and 105 Gy. The results of the research showed that gamma-ray irradiation induced morphological changes and influences the growth of Handeuleum. Irradiation dose at rate of 105 Gy produced new leaf morphology in Handeuleum, namely cordate. Doses of 60, 75, 90, and 105 Gy produce stunted plants with stiff and yellowish-green leaves. The dose of 45 Gy produced relative green color index which was higher than the control plants.</p><p>Keywords: handeuleum, gamma irradiations</p>


Author(s):  
Puspita Deswina ◽  
Sri Indrayani ◽  
Ambar Yuswi Perdani ◽  
Enung S Mulyaningsih

ABSTRACT Garut (Maranta arundinaceae L.) is one crop a potential alternative source of carbohydrate that has enormous potential to be developed. Food made from arrowroot flour has the advantage that is easy to digest up to very good for health. These plants are generally propagated vegetative, so it has a narrow genetic diversity. To increase the genetic diversity of arrowroot plants, gamma ray irradiation was performed at the Center for Radiation and Isotopes, BATAN, at a dose of 10 to 140 Gy with intervals of 10.  Analysis of morphological changes and the selection was done by observing the characteristic changes of the plant began generating plant shoots up to a maximum plant growth or plant produces flowers. The research objective was to determine the optimal dose of irradiation in determining the LD 50 for expanding the arrowroot plant genetic diversity. The method used was completely randomized design with 15 treatments and two replications. Based on the results revealed that the radiation could be affect to the morphological characteristics of plants such as leaves, number of shoots, plant height and tubers production. Key words: gamma ray radiation, alternative food, Garut plant (Maranta arundinaceae L).


2021 ◽  
Vol 8 ◽  
Author(s):  
Muhammad Asim Raza ◽  
Jin-Oh Jeong ◽  
Sang Hyun Park

Chronic and debilitating diseases can be marginally cured by anti-inflammatory, antiseptic, and antibiotic drugs, there is still need for more efficacious delivery approaches. Biodegradable and biocompatible polymeric hydrogels are essential requirements for drug release systems due to sustained or targeted drug delivery. Irradiation crosslinking of polymers is considered a safe route for the fabrication of hydrogels because crosslinking takes place without addition of unnecessary toxic reagents such as initiators or crosslinkers. This technology is a useful way to induce sterilization and crosslinking in a single step. Several natural and synthetic polymers in different combinations are crosslinked through high energy ionizing radiation such as electron beam and gamma ray irradiation. Polymeric hydrogels prepared using these techniques exhibit good gel fraction, swelling ratio, and mechanical properties. In addition, hydrogels possess drug loading and release characteristics, antimicrobial characteristics, and in-vivo/in-vitro cytocompatibility. The advantage of biodegradable and biocompatible drug release systems is the controlled release of drugs without deleterious effects on targeted sites. This mini review about irradiation crosslinked hydrogels will provide sufficient guidelines for new researchers to proceed further in this field.


2020 ◽  
Vol 1497 ◽  
pp. 012032
Author(s):  
N F Ronny Sham ◽  
N Hasan ◽  
N Abdul Hamid Hasani ◽  
M K Karim ◽  
M J Ibahim

Sign in / Sign up

Export Citation Format

Share Document