scholarly journals Simultaneous optimization of machine and tool parameters for EDM using WC/Co P/M electrode made with micron and nano sized particles

Author(s):  
Nadimpalli Sarada Purnima ◽  
Srinivasa Rao Pujari ◽  
Siva Prasad Dora

Multi-response characteristic optimization is the most desired aspect of the components produced from electric discharge machining (EDM). Obtaining the optimal combination of parameters for surface roughness (SR) and micro-hardness (MH) is always a challenging task as the machining parameters favourable to one performance measure adversely affects the other. The present paper deals with the simultaneous optimization of SR and MH of D2 alloy steel during EDM with tungsten carbide (WC)/cobalt (Co) P/M electrode by considering electrode and machine tool parameters. Experimental run order was planned with Taguchi’s orthogonal arrays (OA) and in the present investigation, it is based on L18 OA. The analysis of variance (ANOVA) performed for the grey relational grade (GRG) showed that the tool parameter “particle size” (PS) is the most influential factor (61.43%) for simultaneous improvement of performance measures. The P/M electrode made of fine particle size (i.e., at nano level) has improved the process stability and reduced the arcing and short-circuiting results in reduced surface roughness. Simultaneously, the formation of the hard intermetallic phase’s viz., Fe3C, Cr23C6, W2C, Fe6W6C, and Cr2Fe14C on the EDMed surface has increased the surface hardness. The optimal set of parameters was validated through confirmation experiments.

2020 ◽  
Vol 19 (01) ◽  
pp. 147-165
Author(s):  
Atul Sharma ◽  
M. L. Aggarwal ◽  
Lakhwinder Singh

Glass fiber reinforced polymer (GFRP) composite gear is used in a number of applications where fine motion transmission and silent rotation is required. In order to increase its usage there is a need to increase the quality of gear. Shrinkage problem is associated with injection molded gear. In present case blank is prepared by injection molding and teeth are cut on gear shaper by which metrology can be controlled by optimizing the machining parameters. An analysis of variance was applied on 27 experiments to validate the process and found out that rotary feed is at rank 1 which is 0.15[Formula: see text]mm/stroke, cutting fluid ratio is at rank 2 which is 12%, cutting speed is at rank 3 which is 240 stroke/min, fluid flow rate is at rank 4 which is 30 ml/min. By using these parameters optimum performance obtained is 0.213[Formula: see text]mm root diameter deviation (RD), 0.165[Formula: see text]mm tooth thickness variation (TT) and 1[Formula: see text][Formula: see text]m roughness average (Ra) with grey relational grade of 0.8318. The optimum response provided the best value of RD, TT and Ra for the range included in experimental results which is 0.138 to 0.416[Formula: see text]mm, 0.012 to 0.187[Formula: see text]mm and 1.2 to 2.43[Formula: see text][Formula: see text]m respectively. Surface roughness improvement in this work is 49.8% higher as compared to result available in literature.


Author(s):  
Goutam Kumar Bose

The present paper highlights selection of significant machining parameters during Electrochemical grinding while machining alumina-aluminum interpenetrating phase composites by MCDM techniques. The conflicting responses like higher material removal rate, lower surface roughness, lower overcut and lower cutting force are ensured simultaneously by a single parametric combination. Control parameters like electrolyte concentration, voltage, depth of cut and electrolyte flow rate have been considered for experimentation. VIKOR is one of the multiple criteria decision making (MCDM) models to determine the reference ranking from a set of alternatives in the presence of conflicting criteria. Finally Grey Relational Analysis is performed to optimize multiple performances in which different levels combinations of the factors are ranked based on grey relational grade. Surface roughness is given more importance than other responses, using Fuzzy Set Theory considering basic objective of the process. It is observed that substantial improvement in machining performance takes place following this technique. The study highlights the effects of different process variables on multiple performances for complex process like ECG.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
V. Chengal Reddy ◽  
Thota Keerthi ◽  
T. Nishkala ◽  
G. Maruthi Prasad Yadav

AbstractSurface roughness and heat-affected zone (HAZ) are the important features which influence the performance of the laser-drilled products. Understanding the influence of laser process parameters on these responses and identifying the cutting conditions for simultaneous optimization of these responses are a primary requirement in order to improve the laser drilling performance. Nevertheless, no such contribution has been made in the literature during laser drilling of AISI 303 material. The aim of the present work is to optimize the surface roughness (Ra) and HAZ in fibre laser drilling of AISI 303 material using Taguchi-based grey relational analysis (GRA). From the GRA methodology, the recommended optimum combination of process parameters is flushing pressure at 30 Pa, laser power at 2000 W and pulse frequency at 1500 Hz for simultaneous optimization of Ra and HAZ, respectively. From analysis of variance, the pulse frequency is identified as the most influenced process parameters on laser drilling process performance.


2018 ◽  
Vol 7 (4.5) ◽  
pp. 542
Author(s):  
Harshalkumar R. Mundane ◽  
Dr. A. V. Kale ◽  
Dr. J. P. Giri

EDM (Spark erosion) is non-conventional machining process which uses as removing unwanted material by electrical spark erosion. EDM Machining parameters affecting to the performance and the industries goal is to produce high quality of product with less time consuming and cost. To achieve these goals, optimizing the machining parameters such as pulse on time, pulse off time, cutting speed, depth of cut, duty cycle, arc gap, voltage etc. The performance measure of EDM is calculated on the basis of Material Remove Rate(MRR), Tool Wear Rate(TWR), and Surface Roughness(SR).The main objective of present work is to investigate of the influence of input EDM (Electro Discharge Machining) parameters on machining characteristics like surface roughness and the effects of various EDM process parameters such as pulse on time, pulse off time, servo voltage, peak current, dielectric flow rate, on different process response parameters such as material removal rate (MRR), surface roughness (Ra), Kerf (width of Cut), tool wear ratio(TWR)and surface integrity factors. In this paper few selected research paper related to Die-sinker EDM with effect of MRR, TWR, surface roughness (SR) and work piece material have been discussed.   


Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 472
Author(s):  
Peijie Liu ◽  
Yanming Quan ◽  
Junjie Wan ◽  
Lang Yu

To guarantee the smooth operation of trains, rail grinding and wheel turning are necessary practices to remove surface defects. Surface integrity of machined wheel/rail materials is significant to affect their tribological performance. In this paper, firstly, the wheel specimens were turned by a CNC lathe and the rail specimens were ground by a cylindrical grinding machine with various machining parameters. Then, the wear and damage behavior of the machined wheel/rail discs was systematically investigated via a twin-disc wear testing apparatus under dry rolling-sliding condition. The experimental results show that the surface hardness of rail discs after machining is slightly higher than that of wheel discs, while the surface roughness and plastic deformation layer of wheel discs are much larger than those of rail discs. The surface hardness increase degree of rail discs and their thickness of plastic deformation layer are greater than those of wheel discs after the rolling-sliding test. The wear loss of wheel discs is much larger than that of rail discs. Surface roughness, hardness and plastic deformation layer of wheel/rail discs after machining exert a comprehensive effect on the wear behavior, and friction pair with appropriate original surface hardness and roughness generates the smallest amount of wear loss.


2013 ◽  
Vol 763 ◽  
pp. 1-27 ◽  
Author(s):  
S. Ramesh ◽  
L. Karunamoorthy

Turning operation is fundamental in the manufacturing industry to produce cylindrical parts especially for producing near-nett shape, and aesthetic requirements with good dimensional accuracy. This present research chapter, an attempt has been made to investigate the machining characteristics of titanium alloys. The investigation has been carried out to measure the effect of tool flank wear, surface roughness, cutting force and temperature on different cutting tools by adopting Taguchi’s design of experiment concept. This investigation was set to analyse and develop a mathematical model using response surface methodology, fuzzy logic. The observed responses were optimized using grey relational grade algorithm. Except for a few cases, the experimental results have close proximity (95%) to the predicted value. This validates the model developed in this work. Orthogonal array with grey relational analysis has been successfully implemented for the optimization of the machining parameters. The optimized cutting conditions evolved in this research study will help to achieve better machinability of these advanced materials like titanium alloy.


Author(s):  
Krishna Kumar Saxena ◽  
Sanjay Agarwal ◽  
Jyoti Mukhopadhyay

Micro-electrical discharge machining (μ-EDM) is a non-traditional manufacturing technique that has been widely used in the production of precision engineering components throughout the world in recent years. The most important performance measure in μ-EDM is the surface roughness. The Silicon Carbide is a reaction bonded advanced ceramic that is the fourth hardest material after Diamond, boron nitride and boron carbide. Due to low fracture toughness, machining of Silicon Carbide is accomplished with EDM. In this study, the experimental studies were conducted under varying gap voltage, capacitance and threshold. The numbers of experiments were reduced by L9 array of Taguchi’s theory of DOE. Signal-to-noise (S/N) ratio was employed to determine the most influencing levels of parameters that affect the surface roughness in the μ-EDM of conductive silicon carbide. To validate the study, confirmation experiment has been carried out at optimum set of parameters and predicted results have been found to be in good agreement with experimental findings. A fuzzy logic model for predicting surface roughness during μEDM was also developed on MATLAB software and the goodness of fit of predicted values with experimental values was tested using chi-square test.


Author(s):  
Trung-Thanh Nguyen ◽  
Chi-Hieu Le

The burnishing process is used to enhance the machining quality via improving the surface finish, surface hardness, wear-resistance, fatigue, and corrosion resistance, and it is mostly used in aerospace, biomedical, and automotive industries to improve reliability and performance of the component. The combined turning and burnishing process is therefore considered as an effective solution to enhance both machining quality and productivity. However, the trade-off analysis between energy consumption, surface characteristics, and production costs has not been well-addressed and investigated. This study presents an optimization of the compressed air assisted-turning-burnishing (CATB) process for aluminum alloy 6061, aimed to decrease the energy consumption as well as surface roughness and to enhance the Vicker hardness of the machined surface. The machining parameters for consideration include the machining speed, feed rate, depth of cut, burnishing force, and the ball diameter. The improved Kriging models were used to construct the relations between machining parameters and the technological response characteristics of the machined surface. The optimal machining parameters were obtained utilizing the desirability approach. The energy based-cost model was developed to assess the effectiveness of the proposed CATB process. The findings showed that the selected optimal outcomes of the depth of cut, burnishing force, diameter, feed rate, and machining speed are 0.66 mm, 196.3 N, 8.0 mm, 0.112 mm/rev, and 110.0 m/min, respectively. The energy consumption and surface roughness are decreased by 20.15% and 65.38%, respectively, while the surface hardness is improved by 30.05%. The production cost is decreased by 17.19% at the optimal solution. Finally, the proposed CATB process shows a great potential to replace the traditional techniques which are used to machine non-ferrous metals.


Author(s):  
Djordje Cica ◽  
Stevo Borojevic ◽  
Goran Jotic ◽  
Branislav Sredanovic ◽  
Sasa Tesic

With the development of high-performance CNC machine tools, milling has been established as one of the main means of machining thin-walled parts. Thus, the selection of process parameters for milling operations is an important issue in end milling of thin-walled parts to assure product quality and increase productivity. The current study explores three machining parameters, namely wall thickness, feed, and machining strategies, that influence dimensional and form errors, surface roughness, and machining time milling of 7075-T6 aluminum alloy thin-walled parts. The effects of machining parameters on each of the response variables were analyzed using graphs of the main effects and three-dimensional surface plots. Analysis of the results show that the most influential factor for wall thickness deviation, dimensions deviation, perpendicularity deviation, flatness deviation, surface roughness of inner walls, surface roughness of outer walls, and surface roughness of reference plane was machining strategy, while feed is the most influential parameter affecting the machined time, followed by the machining strategy. The desirability concept has been used for simultaneous optimization in terms of machining parameters of the thin-walled parts machining process. Finally, a confirmation test with the optimal parameter settings was carried out to validate the results.


2020 ◽  
Vol 846 ◽  
pp. 42-46 ◽  
Author(s):  
J.S.Suresh Babu ◽  
Min Heo ◽  
Chung Gil Kang

Recently, researchers and engineers have been interested in the development of hybrid metal matrix composites (HMMCs) for the applications of automotive and aerospace industries owing to their superior properties due to the usage a wide range of material combinations in its manufacturing. The present study focuses on the machining of magnesium based hybrid composites reinforced with CNT (1vol.%) and SiC (2vol.%).The influence of machining parameters such as spindle speed, feed rate, drill diameter and point angle on burr formation and surface roughness on drilling the composites were investigated using Taguchi method. The drilling parameters were optimized by using ANOVA experimental design and also find out the percentage of contribution of each factor. Based on the results, the most influential factor for the burr thickness was spindle speed and point angle. While spindle speed and feed rate were the influencing factors for surface roughness. The analysis revealed that burr height, burr thickness, and surface roughness decreases significantly with an increase in spindle speed.


Sign in / Sign up

Export Citation Format

Share Document