scholarly journals Functional-Material-Based Touch Interfaces for Multidimensional Sensing for Interactive Displays: A Review

2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Shuo Gao

Multidimensional sensing is a highly desired attribute for allowing human-machine interfaces (HMIs) to perceive various types of information from both users and the environment, thus enabling the advancement of various smart electronics/applications, e.g., smartphones and smart cities. Conventional multidimensional sensing is achieved through the integration of multiple discrete sensors, which introduces issues such as high energy consumption and high circuit complexity. These disadvantages have motivated the widespread use of functional materials for detecting various stimuli at low cost with low power requirements. This work presents an overview of simply structured touch interfaces for multidimensional (x-y location, force and temperature) sensing enabled by piezoelectric, piezoresistive, triboelectric, pyroelectric and thermoelectric materials. For each technology, the mechanism of operation, state-of-the-art designs, merits, and drawbacks are investigated. At the end of the article, the author discusses the challenges limiting the successful applications of functional materials in commercial touch interfaces and corresponding development trends.

2010 ◽  
Vol 1276 ◽  
Author(s):  
José G. Miranda-Hernández ◽  
Elizabeth Refugio-Garcia ◽  
Elizabeth Garfias-García ◽  
Enrique Rocha-Rangel

AbstractThe synthesis of Al2O3-based functional materials having 10 vol. % of fine aluminum or titanium and aluminum-disperse or titanium-dispersed nitride hardened-particles has been explored. Two experimental steps have been set for the synthesis; specifically, sintering of Al2O3-aluminum or Al2O3-titanium powders which were thoroughly mixed under high energy ball-milling, pressureless-sintered at 1400°C during 1 h in argon atmosphere and then for the second step it was induced formation of aluminum nitride or titanium nitride at 500°C during different times (24, 72 and 120 h) by a nitriding process via immersion in ammoniac salts. SEM analyses of the microstructures obtained in nitride bodies were performed in order to know the effect of the ammoniac salts used as nitrating on the microstructure of aluminum or titanium for each studied functional material. It was observed that an aluminum nitride or titanium nitride layer growth from the surface into the bulk and reaches different depth as the nitriding time of the functional material was increased. The use of aluminum or titanium significantly enhanced density level and hardness of the functional materials.


2021 ◽  
Vol 13 (8) ◽  
pp. 210 ◽  
Author(s):  
Sheetal Ghorpade ◽  
Marco Zennaro ◽  
Bharat Chaudhari

With exponential growth in the deployment of Internet of Things (IoT) devices, many new innovative and real-life applications are being developed. IoT supports such applications with the help of resource-constrained fixed as well as mobile nodes. These nodes can be placed in anything from vehicles to the human body to smart homes to smart factories. Mobility of the nodes enhances the network coverage and connectivity. One of the crucial requirements in IoT systems is the accurate and fast localization of its nodes with high energy efficiency and low cost. The localization process has several challenges. These challenges keep changing depending on the location and movement of nodes such as outdoor, indoor, with or without obstacles and so on. The performance of localization techniques greatly depends on the scenarios and conditions from which the nodes are traversing. Precise localization of nodes is very much required in many unique applications. Although several localization techniques and algorithms are available, there are still many challenges for the precise and efficient localization of the nodes. This paper classifies and discusses various state-of-the-art techniques proposed for IoT node localization in detail. It includes the different approaches such as centralized, distributed, iterative, ranged based, range free, device-based, device-free and their subtypes. Furthermore, the different performance metrics that can be used for localization, comparison of the different techniques, some prominent applications in smart cities and future directions are also covered.


2020 ◽  
Vol 25 ◽  
pp. 133-153 ◽  
Author(s):  
R.S. Santos ◽  
Severino Rodrigues de Farias Neto ◽  
A.G. Barbosa de Lima ◽  
J.B. Silva Júnior ◽  
A.M. Vasconcelos da Silva

Several studies about drying of ceramic materials have been developed in many engineering and fabrication sectors. This process requires high investments and high energy consumption, resulting in high costs to the companies of this sector. In many situations, it is common the use of theoretical solutions that allow, with relative ease and low cost, to change the operational and geometrical conditions of the dryer or object of drying, to obtain the optimized operational conditions. In this sense, this work aims to predict the drying process of a ceramic brick in an oven using the computational fluid dynamics analysis. For a drying temperature of 80°C, the results of the drying and heating kinetics, and the moisture content and temperature distributions of the product and the air and the air velocity and pressure in the oven are shown and analyzed. A comparison between the predicted and experimental data of the average moisture content and temperature of the brick along the process was done and a good agreement was obtained.


2019 ◽  
Vol 2019 (4) ◽  
pp. 7-22
Author(s):  
Georges Bridel ◽  
Zdobyslaw Goraj ◽  
Lukasz Kiszkowiak ◽  
Jean-Georges Brévot ◽  
Jean-Pierre Devaux ◽  
...  

Abstract Advanced jet training still relies on old concepts and solutions that are no longer efficient when considering the current and forthcoming changes in air combat. The cost of those old solutions to develop and maintain combat pilot skills are important, adding even more constraints to the training limitations. The requirement of having a trainer aircraft able to perform also light combat aircraft operational mission is adding unnecessary complexity and cost without any real operational advantages to air combat mission training. Thanks to emerging technologies, the JANUS project will study the feasibility of a brand-new concept of agile manoeuvrable training aircraft and an integrated training system, able to provide a live, virtual and constructive environment. The JANUS concept is based on a lightweight, low-cost, high energy aircraft associated to a ground based Integrated Training System providing simulated and emulated signals, simulated and real opponents, combined with real-time feedback on pilot’s physiological characteristics: traditionally embedded sensors are replaced with emulated signals, simulated opponents are proposed to the pilot, enabling out of sight engagement. JANUS is also providing new cost effective and more realistic solutions for “Red air aircraft” missions, organised in so-called “Aggressor Squadrons”.


2021 ◽  
Vol 10 (1) ◽  
pp. 13
Author(s):  
Claudia Campolo ◽  
Giacomo Genovese ◽  
Antonio Iera ◽  
Antonella Molinaro

Several Internet of Things (IoT) applications are booming which rely on advanced artificial intelligence (AI) and, in particular, machine learning (ML) algorithms to assist the users and make decisions on their behalf in a large variety of contexts, such as smart homes, smart cities, smart factories. Although the traditional approach is to deploy such compute-intensive algorithms into the centralized cloud, the recent proliferation of low-cost, AI-powered microcontrollers and consumer devices paves the way for having the intelligence pervasively spread along the cloud-to-things continuum. The take off of such a promising vision may be hurdled by the resource constraints of IoT devices and by the heterogeneity of (mostly proprietary) AI-embedded software and hardware platforms. In this paper, we propose a solution for the AI distributed deployment at the deep edge, which lays its foundation in the IoT virtualization concept. We design a virtualization layer hosted at the network edge that is in charge of the semantic description of AI-embedded IoT devices, and, hence, it can expose as well as augment their cognitive capabilities in order to feed intelligent IoT applications. The proposal has been mainly devised with the twofold aim of (i) relieving the pressure on constrained devices that are solicited by multiple parties interested in accessing their generated data and inference, and (ii) and targeting interoperability among AI-powered platforms. A Proof-of-Concept (PoC) is provided to showcase the viability and advantages of the proposed solution.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 122
Author(s):  
Renwei Lu ◽  
Xiaolong Ren ◽  
Chong Wang ◽  
Changzhen Zhan ◽  
Ding Nan ◽  
...  

Lithium-ion hybrid capacitors (LICs) are regarded as one of the most promising next generation energy storage devices. Commercial activated carbon materials with low cost and excellent cycling stability are widely used as cathode materials for LICs, however, their low energy density remains a significant challenge for the practical applications of LICs. Herein, Na0.76V6O15 nanobelts (NaVO) were prepared and combined with commercial activated carbon YP50D to form hybrid cathode materials. Credit to the synergism of its capacitive effect and diffusion-controlled faradaic effect, NaVO/C hybrid cathode displays both superior cyclability and enhanced capacity. LICs were assembled with the as-prepared NaVO/C hybrid cathode and artificial graphite anode which was pre-lithiated. Furthermore, 10-NaVO/C//AG LIC delivers a high energy density of 118.9 Wh kg−1 at a power density of 220.6 W kg−1 and retains 43.7 Wh kg−1 even at a high power density of 21,793.0 W kg−1. The LIC can also maintain long-term cycling stability with capacitance retention of approximately 70% after 5000 cycles at 1 A g−1. Accordingly, hybrid cathodes composed of commercial activated carbon and a small amount of high energy battery-type materials are expected to be a candidate for low-cost advanced LICs with both high energy density and power density.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Duy Tung Phan ◽  
Chang Won Jung

AbstractAn electromagnetic pulse (EMP) with high energy can damage electronic equipment instantly within a wide range of thousands of kilometers. Generally, a metal plate placed inside a thick concrete wall is used against an EMP, but it is not suitable for an EMP shielding window, which requires not only strong shielding effectiveness (SE) but also optical transparency (OT). In this paper, we propose a very thin and optically transparent structure with excellent SE for EMP shielding window application. The proposed structure consists of a saltwater layer held between two glass substrates and two metal mesh layers on the outside of the glass, with a total thickness of less than 1.5 cm. The SE and OT of the structure are above 80 dB and 45%, respectively, which not only meet the requirement of EMP shielding for military purposes but also retain the procedure of good observation. Moreover, the OT of the structure can be significantly improved using only one metal mesh film (MMF) layer, while the SE is still maintained high to satisfy the required SE for home applicants. With the major advantages of low cost, optical transparency, strong SE, and flexible performance, the proposed structure can be considered a good solution for transparent EMP shielding windows.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 357
Author(s):  
Pedro Moura ◽  
José Ignacio Moreno ◽  
Gregorio López López ◽  
Manuel Alvarez-Campana

University campuses are normally constituted of large buildings responsible for high energy demand, and are also important as demonstration sites for new technologies and systems. This paper presents the results of achieving energy sustainability in a testbed composed of a set of four buildings that constitute the Telecommunications Engineering School of the Universidad Politécnica de Madrid. In the paper, after characterizing the consumption of university buildings for a complete year, different options to achieve more sustainable use of energy are presented, considering the integration of renewable generation sources, namely photovoltaic generation, and monitoring and controlling electricity demand. To ensure the implementation of the desired monitoring and control, an internet of things (IoT) platform based on wireless sensor network (WSN) infrastructure was designed and installed. Such a platform supports a smart system to control the heating, ventilation, and air conditioning (HVAC) and lighting systems in buildings. Furthermore, the paper presents the developed IoT-based platform, as well as the implemented services. As a result, the paper illustrates how providing old existing buildings with the appropriate technology can contribute to the objective of transforming such buildings into nearly zero-energy buildings (nZEB) at a low cost.


Smart Cities ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 919-937
Author(s):  
Nikos Papadakis ◽  
Nikos Koukoulas ◽  
Ioannis Christakis ◽  
Ilias Stavrakas ◽  
Dionisis Kandris

The risk of theft of goods is certainly an important source of negative influence in human psychology. This article focuses on the development of a scheme that, despite its low cost, acts as a smart antitheft system that achieves small property detection. Specifically, an Internet of Things (IoT)-based participatory platform was developed in order to allow asset-tracking tasks to be crowd-sourced to a community. Stolen objects are traced by using a prototype Bluetooth Low Energy (BLE)-based system, which sends signals, thus becoming a beacon. Once such an item (e.g., a bicycle) is stolen, the owner informs the authorities, which, in turn, broadcast an alert signal to activate the BLE sensor. To trace the asset with the antitheft tag, participants use their GPS-enabled smart phones to scan BLE tags through a specific smartphone client application and report the location of the asset to an operation center so that owners can locate their assets. A stolen item tracking simulator was created to support and optimize the aforementioned tracking process and to produce the best possible outcome, evaluating the impact of different parameters and strategies regarding the selection of how many and which users to activate when searching for a stolen item within a given area.


Sign in / Sign up

Export Citation Format

Share Document