scholarly journals Impact of the chemical properties of different soil units on the dynamics of vegetal biodiversity in the Benoue National Park and its Western and Northern peripheries

2020 ◽  
Vol 7 (2) ◽  
pp. 247-257
Author(s):  
Narcisse Soh Njekeu ◽  
Clautilde Megueni ◽  
Tchobsala ◽  
Sylvain Doua Aoudou ◽  
Jean Paul Kevin Mbamba Mbamba
2002 ◽  
Vol 39 (9) ◽  
pp. 1349-1361 ◽  
Author(s):  
Stephen E Grasby ◽  
Dwayne A.W Lepitzki

Nine thermal springs, in three groups, occur along the flank of Sulphur Mountain in Banff National Park. The principal recharge zone is suggested to be above 2000 m elevation on Mount Rundle, circulation depths are estimated to be 3.2 ± 0.6 km, and discharge is focused along the Sulphur Mountain Thrust. Springs show constant temperature and total dissolved solids load throughout the winter, whereas both drop in association with spring snowmelt. The degree and timing of temperature drops are a function of elevation, with the highest springs showing the earliest and most significant temperature drop. The highest elevation springs also show the greatest seasonal variability in water chemistry. Unusual seasonal flow stoppages of these springs are related to extreme low precipitation years. The biogeochemistry of the thermal springs and population fluctuations of the endemic and endangered Banff springs snail (Physella johnsoni) are strongly related to seasonal variability in flow rates. Changes in redox conditions associated with an influx of shallow groundwater during spring snowmelt negatively impact the microbial community that forms a principal food supply for the snail.


2015 ◽  
Vol 66 (1) ◽  
pp. 36-44 ◽  
Author(s):  
Adam Szewczyk ◽  
Janina Kaniuczak ◽  
Edmund Hajduk ◽  
Renata Knap

Abstract The aim of the study was to investigate the basic physicochemical and chemical properties of six soil profiles located in the surrounding of the Magura National Park (S Poland). The type of agricultural use and terrain relief were the main criteria for choosing the soil profiles. The research identified the following types or sub-types of soils: Eutric Gleysols, Dystric Cambisols, Eutric Cambisols, Gleyic Luvisols. The analyzed soils were characterized by particle size distribution of a silty clay or silt. They were usually strongly acidified as evidenced by low pH (in 1M KCl, values ranged from 3.8 to 5.8), high values of hydrolytic acidity (from 0.8 up to 10 cmol(+)·kg-1) and exchangeable acidity (from 0.05 to 4.05 cmol(+)·kg-1), as well as remarkable concentration of exchangeable aluminum (from 0 to 3.96 cmol(+)·kg-1). The organic carbon content in studied profiles did not exceed (except from gley soil in profile ) 30 g·kg-1 and it decreased along with the depth to several g·kg-1 in parent rock. These soils were characterized by not very high content of total nitrogen (from 0.3 to 9.39 g·kg-1) and low available phosphorus concentration (from 3.5 to 90.3 mg P2O5·kg-1). Contents of available potassium (from 82 to 570 mg K2O·kg-1) and magnesium (from 33 to 412 mg Mg·kg-1) allow for classifying the profiles studied as soils moderately or highly abundant in K and Mg. The highest levels of biogenic elements were determined in surface horizons. Studied soils were characterized by high total sorption capacity (T) - from 7.04 to 63.4 cmol(+)·kg-1. Sum of base cations (S) reached values from 3.01 to 61.2 cmol(+)·kg-1, which resulted in high base saturation (V) (maximum over 96%). The base saturations in profiles of the soils increased along with depth.


2020 ◽  
Vol 21 (3) ◽  
Author(s):  
Yelin Adalina ◽  
RENY SAWITRI

Abstract. Adalina Y, Sawitri R. 2020. Vegetation analysis, physico-chemical properties and economic potential of damar (Agathis dammara) in Mount Halimun Salak National Park,West Java, Indonesia. Biodiversitas 21: 1122-1129. Analysing the potential of non-timber forest product (NTFP) plants in Mount Halimun Salak National Park (MHSNP) is one of the important aspects in supporting conservation and improving the economic status of communities around the forest. This study aims to determine the economic potential and benefits of damar plants (Agathis dammara) in MHSNP area of Kawah Ratu Resort, Sukabumi District, West Java, Indonesia along with analysis of damar plant forest and physico-chemical analysis of the copal/resin. The selection of research village was by purposive sampling and the selection of respondents was by random sampling. Forest vegetation in the Kawah Ratu Resort is entirely dominated by damar plants. The Important Value Index (IVI) of damar plant trees is 300% and the density is 582 trees/ha. The quality of copal from Kawah Ratu Resort meets SNI standards in parameters like ash content, soft point and melting point, while the saponification number is above SNI standard. Level of dung in copal chunks meet SNI standards and has better quality than copal in the form of powder. The present average income of farmers from resin tapping is Rp 624,000/person /month, which makes an average contribution of 63.08% to the total household income of farmers. But the actual economic potential of gum resin in Kawah Ratu Resort was estimated to be around Rp 596,920,000/month.


2020 ◽  
Vol 29 (7) ◽  
pp. 628 ◽  
Author(s):  
Speranza C. Panico ◽  
Maria T. Ceccherini ◽  
Valeria Memoli ◽  
Giulia Maisto ◽  
Giacomo Pietramellara ◽  
...  

The intensive wildfires recurring in the Mediterranean area modify soil physico-chemical properties, in turn inducing changes in soil microbial abundance and activity. Soils were sampled from burnt and adjacent unburnt sites within Vesuvius National Park 1 year after a large wildfire occurred in summer 2017. The aims of the present study were to evaluate the effects of fires on soil characteristics and to investigate whether different plant types contribute to mitigating or enhancing these effects. The results showed lower organic matter and water content and a higher C/N ratio in burnt than in unburnt soils. In particular, this trend was the same for all the plant types investigated, with the exception of soils covered by black locust tree and holm oak, which showed a higher C/N ratio in unburnt than in burnt soils. In soils covered by holm oaks, a shift in the bacterial and fungal fractions occurred between burnt and unburnt soils, whereas the amount of ammonia oxidisers was notably higher in burnt than in unburnt soils covered by black locusts; the highest N concentration was also measured in burnt soils covered by black locusts. The burnt soils showed a lower metabolic quotient and a higher rate of organic carbon mineralisation compared with unburnt soils, and this trend was particularly evident in soils under herbaceous plants. The findings suggest that soils covered by herbaceous species are more sensitive to fire effects and less able to restore their functionality compared with soils covered by trees.


Soil Research ◽  
2004 ◽  
Vol 42 (4) ◽  
pp. 389 ◽  
Author(s):  
C. B. Hedley ◽  
I. J. Yule ◽  
C. R. Eastwood ◽  
T. G. Shepherd ◽  
G. Arnold

Three surveys of a pastoral–cropping farming system were carried out over a period of 1 year, using an electromagnetic sensor and real-time-kinematic (RTK)-GPS. The maps produced delineated areas of different apparent soil electrical conductivity (ECa). These delineated areas were compared with soil units of a conventional soil map and results showed the ECa map related well to soil-particle-size classes. In addition ECa could be used to predict groupings of soil phases accurately within one soil type.Soil coring to depths of 1 m, to determine soil physical and chemical properties, showed ECa values were moderately well correlated (R2 = 0.72) to soil clay percentage, weighted for the soil profile. Soil fertility indicators, Olsen P (R2 = 0.61), cation exchange capacity (R2 = 0.59), and exchangeable magnesium (R2 = 0.76) also related well. The linear regression (R2 = 0.76) of ECa with exchangeable magnesium is thought to reflect the dominant clay mineralogy of the study area, i.e. chlorites weathering to illites and releasing magnesium to the soil solution. Discriminant statistical analysis of results showed point ECa values could be used to predict 2 major groupings of the mapped soil phases with 100% accuracy. More precise prediction of these mapped soil units is constrained by localised management effects. Elevated ECa values occur at areas of soil compaction, which have been deduced from measurements of soil strength, aggregate size distribution and visual soil assessment.


2012 ◽  
Vol 33 (3) ◽  
pp. 207-224 ◽  
Author(s):  
Tony R. Walker

Abstract Atotal of 212 soil profiles were described and assessed for physical and chemical properties during July 2006 as part of an Ecological Land Classification study along the Churchill River in central Labrador. Two major soil types were found in the study area along the Churchill River: Podzols and Organic soils. Podzolic soils covered approximately 60% and Organic soils occurred in 24% of the study area. Approximately 15% of the study area was classified as rock and other unconsolidated material. Summary results and a sub−set of the following soil units (from 10 soil profiles) are presented here and were distin− guished according to the Canadian System of Soil Classification (CSSC) (Soil Classifica− tion Working Group 1998): Orthic Humo−Ferric Podzol, Placic Ferro−Humic Podzol, Gleyed Humo−Ferric Podzol, Sombric Humo−Ferric Podzol, Gleyed Regosol and Orthic Luvic Gleysol. The basic properties of the soil units identified above included: (i) morpho− logical descriptions of soil profiles with differentiated horizons; (ii) field−texture tests were used to determine classes and physical properties of sands, silts, loams and occurrence of mottles; and (iii) a range of soil chemical composition of different horizons (e.g., pH, total organic carbon [TOC] and select metal concentrations) which indicated no anthropogenic contamination above background concentrations in the area.


Author(s):  
Lilla Mielnik ◽  
Ryszard Piotrowicz ◽  
Piotr Klimaszyk

Chemical properties of bottom sediments in throughflow lakes located in Drawieński National ParkThis study presents and discusses the result of research on the chemical composition of bottom sediments of throughflow lakes located in Drawieński National Park. Basic hydrochemical indicators of the studied sediments are discussed: total organic carbon (C


2020 ◽  
Author(s):  
Jan Nyssen ◽  
Sander Tielens ◽  
Kassa Teka ◽  
Mitiku Haile ◽  
Amanuel Zenebe ◽  
...  

<p>Understanding the geographical distribution of soils is indispensable for policy and decision makers to achieve the goal of increasing agricultural production and reduce poverty, particularly in the Global South. The soilscapes of the Giba catchment (900-3300 m a.s.l.; 5133 km²) in northern Ethiopia were studied, in support of sustainable soil use and land management. Based on their morphologic, physical and chemical properties, 141 soil profile pits and 1381 additional augered profiles were classified according to the World Reference Base for soil resources. The dominant soil units are Leptosols (19% coverage), Vertic Cambisols (14%), Regosols and Cambisols (10%), Skeletic and Leptic Cambisols and Regosols (9%), Rendzic Leptosols (7%), Calcaric and Calcic Vertisols (6%), Chromic Luvisols (6%) and Chromic and Pellic Vertisols (5%). The soilscapes are best explained by the topography and parent material that are the major factors determining the geomorphic processes in the area. Besides these two factors, land cover that is strongly impacted by human activities, may not be overlooked. Except for the Vertisols and patchy Phaeozems that are stable since the Mid-Holocene, all other soil units in the study area are the result of profile truncation on the one hand, and colluviation more downslope on the other hand. In addition, due to three millennia of soil tillage, lynchets have been formed at many places along the slope, and rock fragments concentrated on the surface, leading to armouring that locally prevents deeper erosion. Our soil suitability study shows that currently, after thousands of years of agricultural land use and concomitant land degradation, a new dynamic equilibrium has come into existence in the soilscape, in which ca. 65% of the catchment remains suitable  for agricultural production.</p>


2010 ◽  
Vol 56 (No. 8) ◽  
pp. 361-372 ◽  
Author(s):  
O. Mauer ◽  
E. Palátová

The paper summarizes results from the analyses of Norway spruce (Picea abies [L.] Karst.) stands managed by the Forest Administration in Horní Maršov, Krkonoše National Park (KRNAP), which are affected by decline and by yellowing of the assimilatory apparatus. Forest stands included in the analyses were aged 10–80 years and originated from both artificial and natural regeneration. Analyses of root systems were combined with analyses of soil chemical properties and assimilatory organs, weather conditions and emissions. The analyses showed that affected trees had small and malformed anchoring root systems with a lower number of horizontal roots and a lower number of fine roots of lower vitality (high proportion of dead fine roots), which penetrated only through the uppermost humus horizons. Root systems of affected trees are infested by the honey fungus (Armillaria sp.), which colonizes anchor roots. Neither root nor bole rots were detected so far.


2020 ◽  
Author(s):  
Chiara Bancone ◽  
Professor Neil Rose ◽  
Dr Robert Francis

<p>Microplastics (<5 mm) are persistent environmental pollutants characterised by heterogeneous physico-chemical properties and a broad range of shapes, sizes, colours and composition. Microplastics may be directly released into the environment at this size (i.e. pellets and cosmetic microbeads) when they are known as primary microplastics. However, the majority of microplastics are secondary, i.e. they originate from the degradation of larger plastic items. An important source of secondary microplastics is represented by fibres released during washing of synthetic garments. Although microplastic contamination is thought to be ubiquitous in aquatic ecosystems, very little is known about the scale, the extent of inputs as well as rates of change in rivers and lakes. In particular lake sediments, may represent an important sink for microplastics as well as providing a means to assess historical trends.  </p><p>To assess microplastic abundance, distribution, historical records and composition in the sediments of UK urban and rural lakes, sediment cores have been collected at representative locations in two ponds on Hampstead Heath, in the Borough of Camden, London, and in three lakes in the Norfolk Broads National Park, in eastern England. Microplastics extracted from sediment cores have been identified, and variation in polymer-type analysed through sediment chronostratigraphy. Sediment chronologies can help quantify the historical flux of microplastics from terrestrial environments to freshwaters, reflecting changes in microplastic production over time.</p><p>To highlight seasonal fluxes and variations in microplastic distribution and abundance in the lakes examined, new-design sediment traps were built at UCL Geography Laboratories and anchored to the bottom of the study sites to collect material sinking from the water column. The traps are being monitored, emptied, cleaned and redeployed every three months over about a 2-year period.</p><p>This study presents the results about temporal distribution and seasonal fluxes of microplastics in sediments from Hampstead Heath ponds in London (urban sites) and from the Norfolk Broads National Park (rural sites). The identification of plastic polymers, together with the assessment of microplastic temporal distribution and seasonal patterns of accumulation in lakes will help identify factors influencing microplastic distribution and pollution sources for lakes. The results from this project will deliver a better understanding of the number and scale of sources of microplastics in urban and rural lakes, improving future risk assessments and prevention strategies.</p>


Sign in / Sign up

Export Citation Format

Share Document