scholarly journals A review on synthesis methods of tricyclic 1,2,3,4-tetrahydrocarbazoles

2022 ◽  
Vol 13 (1) ◽  
pp. 160-171
Author(s):  
Nitin Kumar ◽  
Vinod Kumar ◽  
Yogita Chowdhary

In this review article, we discussed old to new synthetic methods used for the preparation of 1,2,3,4-Tetrahydrocarbazole (THCz) based on reported literature. Around the worldwide, various researchers energetically reported new synthetic methods for tetrahydrocarbazoles preparation using conventional method or microwave method or use of catalyst. This review will be helpful to synthetic and medicinal chemist to find selective method for the preparation of 1,2,3,4-Tetrahydrocarbazoles with good percentage yield and less time. This review will also useful to medicinal chemist to design new biologically active tetrahydrocarbazoles based on reported synthetic methods.

2021 ◽  
Vol 18 ◽  
Author(s):  
Isabela A. Graciano ◽  
Alcione S. de Carvalho ◽  
Fernando de Carvalho da Silva ◽  
Vitor F. Ferreira

Background: Malaria is a disease causing millions of victims every year and requires new drugs, often due to parasitic strain mutations. Thus, the search for new molecules that possess antimalarial activity is constant and extremely important. However, the potential that an antimalarial drug possesses cannot be ignored, and molecular hybridization is a good strategy to design new chemical entities. Objective: This review article aims to emphasize recent advances in the biological activities of new 1,2,3-triazole- and quinoline-based hybrids and their place in the development of new biologically active substances. More specifically, it intends to present the synthetic methods that have been utilized for the syntheses of hybrid 1,2,3-triazoles with quinoline nuclei. Method: We have comprehensively and critically discussed all the information available in the literature regarding 1,2,3-triazole- and quinoline-based hybrids with potent antiplasmodial activity. Results: The quinoline nucleus has already been proven to lead to new chemical entities in the pharmaceutical market, such as drugs for the treatment of malaria and other diseases. The same can be said about the 1,2,3-triazole heterocycle, which has been shown to be a beneficial scaffold for the construction of new drugs with several activities. However, only a few triazoles have entered the pharmaceutical market as drugs. Conclusion: Many studies have been conducted to develop new substances that may circumvent the resistance developed by the parasite that causes malaria, thereby improving the therapy currently used.


2020 ◽  
Vol 24 (24) ◽  
pp. 2823-2844
Author(s):  
Aditya Bhattacharyya

: Multiheteroatom-containing small-sized cyclic molecules such as 2- iminothiazolidines are often found to possess beneficial pharmacological properties. In this review article, the biological significance of 2-iminothiazolidines is discussed and the literature reports published in the last 15 years spanning from 2006 to 2020 describing various preparative routes to access 2-iminothiazolidine derivatives have been categorically and chronologically described. The notable synthetic methods discussed here involve ringexpansion transformations of nonactivated and activated aziridines, thiiranes, epoxides, and other miscellaneous reactions.


2021 ◽  
Author(s):  
◽  
Krista Gulbe

The Doctoral Thesis has been prepared as a collection of thematically related scientific publications comprising five publications in the SCI journals, one patent of the Republic of Latvia, and one application for patent of the Republic of Latvia. We have carried out fundamental research on the applications of SO2 as a solvent and reagent in organic synthesis. We have developed several novel synthetic methods that represent the use of liquid SO2 as a solvent for chemical transformations that proceed via carbenium ion intermediates: a) hydration of aryl acetylenes; b) hydrohalogenation of aryl acetylenes; c) ring opening of methylenecyclopropanes with halides; d) glycosylation with glycosyl fluorides. By employing DABSO as an SO2 surrogate, we have also discovered the catalytic activity of Ru(II) complexes towards sulfonylative cross coupling reaction. This finding has been applied for the synthesis of sulfonyl derived compounds.


2021 ◽  
Vol 28 ◽  
Author(s):  
Anastasia A. Uspenskaya ◽  
Ekaterina A. Nimenko ◽  
Aleksei E. Machulkin ◽  
Elena K. Beloglazkina ◽  
Alexander G. Majouga

: Cancer is one of the leading social problems of the modern world. Today prostate cancer is the second leading cause of cancer deaths among men. Targeted drug delivery is widely used to treat and diagnose prostate cancer. Conjugates selectively binding to prostate specific membrane antigen based on urea ligands are being actively developed against this disease. The linker has a significant influence on the biological activity of such conjugates. The linker performs a large number of functions, and its modification is one of the key methods of creating the best pharmacological profile. This review aims to discuss and analyze the main approaches to the method of introduction and synthesis of linkers for this type of conjugates without a description of the influence of biologically active molecules, as well as to establish the key modification methods that have a significant role on the structure-activity relationship. For this purpose, a review of the current scientific literature was performed, both for the conjugates under development and for those already undergoing clinical trials. It was found that the optimal structure is a linker containing an aliphatic fragment near the vector-molecule (n(CH2) = 3-6), followed by a polypeptide chain consisting of 2 to 4 amino acid residues. The presence of a Phe-Phe dipeptide chain or the introduction of negatively charged groups also has a positive effect. Ongoing research in this field helps to establish the accurate effect of each linker fragment, and the development of solid-phase synthesis methods makes it much easier to achieve this goal.


2021 ◽  
Author(s):  
bingru shao ◽  
Lei Shi ◽  
Yong-Gui Zhou

Asymmetric hydrogenation of aromatical compouds represents one of the most straightforward synthetic methods to construct important chiral cyclic skeletons that are often found in biologically active agents and natural products....


2021 ◽  
Author(s):  
Sanjeev Rathore ◽  
Ajay Kumar ◽  
Om Prakash ◽  
Vivekanand ◽  
M.K. Saxena ◽  
...  

Abstract Background: Aryl sulfonamides bearing thiophene and chromene moieties have been reviewed for their antibacterial activity and their synthetic methods. Heterocyclic moiety containing aryl sulfonamide compounds are dispersed in nature and are crucial for life. Diverse investigational strategies towards a structural relationship that cognizance upon the exploration of optimized candidates have grown to be extremely crucial.Method: Literature research tells that for a series of thiophene or chromene moiety containing aryl sulfonamide compoundsare vital in medicinal and industrial chemistry.Aryl sulfonamidescontainingheterocyclic moieties display pharmacological activities against pathogenic microbes.Result:Recent various disciplinary reported articles had been cited in this review article to define the potentialantibacterial properties of thiophene-arylsulfonamide and chromene-arylsulfonamide. Conclusion: The finding of this review confirms the importance of aryl sulfonamidescontaining thiophene or chromene moiety as potential antibacterial agents. These final resultswill give ideasto the synthesis and developmentof reactions leading to the potential derivativesfor betterpharmacological applications.


Author(s):  
Lwazi Ndlwana ◽  
Naledi Raleie ◽  
Mogolodi Dimpe ◽  
Hezron Ogutu ◽  
Mxolisi M Motsa ◽  
...  

There is great importance and need of improving existing carbon materials fabrication methods. As such, this work proposes to discuss, interrogate, and propose viable hydrothermal, solvothermal, and other advanced carbon materials synthetic methods. The advanced carbon materials to be interrogated will include the synthesis of carbon dots, carbon nanotubes, nitrogen/titania-doped carbons, graphene quantum dots, and their nanocomposites with solid/polymeric/metal oxide supports. This will be done with special mind to microwave-assisted solvothermal and hydrothermal synthesis due to their favourable properties such as rapidity, low cost, and green/environmentally-friendliness. Thus, these methods are important during the current and future synthesis and modification of advanced carbon materials for application in energy, gas separation, sensing, and water treatment. Simultaneously, the work will pay special cognizance to methods reducing the fabrication costs and environmental impact while enhancing the properties as a direct result of the synthesis methods. As a direct result, the expectation is to impart a significant contribution to the scientific body of work regarding the improvement of the said fabrication methods.


Surfaces ◽  
2020 ◽  
Vol 3 (1) ◽  
pp. 72-92 ◽  
Author(s):  
Alexander V. Vorontsov ◽  
Héctor Valdés ◽  
Panagiotis G. Smirniotis ◽  
Yaron Paz

Surface chemistry plays a major role in photocatalytic and photoelectrochemical processes taking place with the participation of TiO2. The synthesis methods, surface characterizations, theoretical research methods, and hardware over the last decade generated opportunities for progress in the surface science of this photocatalyst. Very recently, attention was paid to the design of photocatalysts at the nanoscale level by adjusting the types of exposed surfaces and their ratio, the composition and the surface structure of nanoparticles, and that of individual surfaces. The current theoretical methods provide highly detailed designs that can be embodied experimentally. The present review article describes the progress in the surface science of TiO2 and TiO2-based photocatalysts obtained over the last three years. Such aspects including the properties of macro- and nano-scale surfaces, noble-metal-loaded surfaces, doping with Mg and S, intrinsic defects (oxygen vacancies), adsorption, and photoreactions are considered. The main focus of the article is on the anatase phase of TiO2.


Synlett ◽  
2018 ◽  
Vol 29 (12) ◽  
pp. 1552-1571 ◽  
Author(s):  
Jianxian Gong ◽  
Zhen Yang ◽  
Yueqing Gu ◽  
Ceheng Tan

This account describes our group’s latest research in the field of diversity-oriented synthesis of natural products via gold-catalyzed cascade reactions. We present two general strategies based on gold-catalyzed cycloisomerization: a gold-catalyzed cascade reaction of 1,7-diynes and a pinacol-terminated gold-catalyzed cascade reaction. We highlight our development of synthetic methods for the construction of biologically active natural products by using these two strategies.1 Introduction2 Gold-Catalyzed Cascade Reactions of 1,7-Diynes2.1 Collective Synthesis of C15 Oxygenated Drimane-Type Sesquiterpenoids2.2 Synthesis of Left-Wing Fragment of Azadirachtin I2.3 Collective Synthesis of Cladiellins3 Pinacol-Terminated Gold-Catalyzed Cascade Reaction3.1 Asymmetric Formal Total Synthesis of (+)-Cortistatins3.2 Total Synthesis of Orientalol F3.3 Asymmetric Total Synthesis of (–)-Farnesiferol C4 Summary and Outlook


Sign in / Sign up

Export Citation Format

Share Document