scholarly journals Kinerja Marshall Immersion pada Campuran Asphalt Concrete Wearing Course (AC-WC) dengan Penambahan Cangkang Sawit sebagai Substitusi Agregat Halus

2018 ◽  
Vol 15 (2) ◽  
pp. 99-105
Author(s):  
Mukhlis Mukhlis ◽  
Lusyana Lusyana ◽  
Enita Suardi ◽  
Fauna Adibroto

Asphalt concrete wearing courses (AC-WC) are asphalt mixtures which consist of coarse and fine aggregates plus fillers which have a continuous gradation with asphalt binder. In general, the aggregates in the AC WC mixtures consist of natural rock materials which are broken down and in certain areas the availability is limited so it must be imported from other regions. This resulted in relatively high prices from the asphalt mixture. This can be anticipated by looking for alternative aggregate substitute materials, one alternative is to use palm oil shells. In this test, palm shells were used as a substitute for fine aggregates with variations in percentage of palm shells, namely 0%, 5%, 10%, 15%, 20%, 25%, the tests were carried out namely the testing of volumetric characteristics, Marshall characteristics, determination of optimum asphalt content and Marshall immersion. From the results of the study obtained the value of Marshall Immersion decreases as the percentage of palm shells increases in the mixture.

Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4496
Author(s):  
Jiahao Tian ◽  
Sang Luo ◽  
Ziming Liu ◽  
Xu Yang ◽  
Qing Lu

To address the severe distresses of asphalt pavement, a new type of pavement maintenance treatment, porous ultra-thin overlay (PUTO) with small particle size was proposed. The PUTO has a thickness of 1.5–2.5 cm and a large void ratio of 18–25%. As a newly asphalt mixture, the structure characteristics differ from poor traditional pavement. Therefore, it is necessary to investigate the fabrication schemes in laboratory and on-site, respectively. In this study, the optimal fabrication schemes, including compaction temperature and number of blows of PUTO were determined based on Cantabro test and volumetric parameters. Then, the corresponding relationship between laboratory and on-site compaction work was then established based on the energy equivalent principle. On this basis, the numbers of on-site rolling passes and the combination method were calculated. The results show that increased compaction temperature and number of blows reduce the height and enhance the compaction of the Marshall sample. With the same temperature and number of blows, the raveling resistance of coarse gradation, Pavement Asphalt Concrete-1 (PAC-1) is better than that of fine gradation, Pavement Asphalt Concrete-2 (PAC-2), and the increased asphalt viscosity significantly improves the raveling resistance of the asphalt mixture. To ensure the scattering resistance and volumetric characteristic, the initial compaction temperature of the PAC-1 and PAC-2 should not be lower than 150 °C and 165 °C, respectively. Then, the laboratory compaction work and on-site compaction work were calculated and converted based on the principle of energy equivalence. Consequently, the on-site compaction combination of rolling machines for four asphalt mixtures was determined. According to the volumetric parameters, the paving test section proved that the construction temperature and the on-site rolling combination determined by laboratory tests are reasonable, and ultra-thin overlay has good structural stability, drainage, and skid resistance.


2018 ◽  
Vol 2 (01) ◽  
pp. 87
Author(s):  
Muhammad Sadillah ◽  
M. Zainul Arifin ◽  
Achmad Wicaksono

In an effort to increase the strength of mixed asphalt concrete structure ( AC-WC ) in addition to the use of hot asphalt mixture with new specification, the selection of material type used is very important. In addition to asphalt, both coarse and fine aggregates and fillers are one component in a pavement construction that has a large role. Therefore further research is needed on the influence of temperature variation and percentage of filler fly ash to the modulus of r esilien which is good so that it can be applied and able to overcome the damages. In this research is divided into 3 (three) stages namely (1) the selection of materials; (2) the preparation of the specimen; (3) research and data analysis. Asphalt concrete mixed test (AC-WC) showed that Asphalt Optimum (KAO) content with 5.5% asphalt content with VIM value of 3.70%, VMA of 19.00%, Stability of 1,152.93 kg, Flow of 2.78 mm and MQ of 417.39 kg/mm. The result of mixed asphalt concrete (AC-WC) asphalt with filler fly ash test showed that the optimum mixture content was 7% filler content with VIM value 4,21%, VMA 19,21%, Stability 1326.10 kg, Flow of 3.69 mm and MQ of 360.13 kg/mm. Dalam upaya meningkatkan kekuatan struktur campuran beton aspal lapisan aus (AC-WC) selain perlu adanya penggunaan campuran beraspal panas dengan spesifikasi baru, pemilihan jenis material yang digunakan adalah sangat penting. Selain aspal, agregat baik kasar maupun halus serta filler adalah salah satu komponen dalam suatu konstruksi perkerasan jalan yang mempunyai peranan besar. Oleh karena itu diperlukan penelitian lebih lanjut mengenai pengaruh variasi temperatur dan prosentase filler fly ash terhadap modulus resilien yang baik sehingga dapat diterapkan dan mampu mengatasi kerusakan-kerusakan. Dalam penelitian ini terbagi dalam 3 (tiga) tahapan yaitu (1) tahapan pemilihan bahan; (2) tahap persiapan benda uji; (3) tahap penelitian dan analisis data. Hasil pengujian campuran aspal beton lapis aus (AC-WC) menunjukan bahwa Kadar Aspal Optimum (KAO) yaitu dengan kadar aspal 5,5% dengan nilai VIM sebesar 3.70%, VMA sebesar 19,00%, Stabilitas sebesar 1.152,93 Kg, Flow sebesar 2,78 mm dan MQ sebesar 417,39 Kg/mm. Hasil pengujian campuran aspal beton lapis aus (AC-WC) dengan penggantian filller fly ash menunjukan bahwa kadar campuran optimum yaitu dengan kadar filler 7% dengan nilai VIM sebesar 4,21%, VMA sebesar 19,21%, Stabilitas sebesar 1326.10 Kg, Flow sebesar 3,69 mm dan MQ sebesar 360.13 Kg/m.


2011 ◽  
Vol 467-469 ◽  
pp. 1541-1545 ◽  
Author(s):  
Tian Gui Liu ◽  
Shao Peng Wu ◽  
Jun Han

Montmorillonite(MMT)is a typical layered silicate. It has been widely used to modify polymers. It improves the thermal, mechanical and aging properties of polymers. The prominent features of MMT modified asphalt concrete are significant for prolonging the service life of asphalt pavement. The profound researches on the service performance and mechanical characteristics of MMT modified asphalt binder and mixtures are important for the application of MMT modified asphalt concrete in practice projects. The effect of MMT on the creep properties of asphalt mixture has been investigated in the research. The result showed that the physical capabilities of MMT modified bitumen was improved evidently. UTM 25 electro-hydraulic servo-universal testing machine was used to do Creep Text, and proper rheological models are employed to describe such characteristics. Results indicated that the visco-elastic properties of the mixtures can be changed by the use of MMT. The revised Burgers model is suitable for the visco-elastic property research of MMT modified asphalt mixtures. The model demonstrated that the retardant visco-elastic property and viscous property of asphalt mixtures containing MMT can be improved, which result in the enhancement of resistance to permanent deformation for MMT modified asphalt mixtures.


2021 ◽  
Vol 7 (4) ◽  
pp. 549-555
Author(s):  
I Dewa Made Alit Karyawan ◽  
Ratna Yuniarti ◽  
Desi Widianty ◽  
Hasyim Hasyim ◽  
Mudji Wahyudi

The use of natural asphalt is an alternative to meet the high demand for oil asphalt. Asbuton is natural asphalt from Buton Island, Indonesia. However, the use of Asbuton is not as easy as oil asphalt because the asphalt it contains is hard. The asphalt-concrete mixture must go through a rejuvenation process for several days before being compacted. This study aims to determine the performance of asphalt-concrete mixture using Asbuton if it is compacted immediately after mixing, without giving time for the rejuvenation process. Compaction is done when the mixture is hot and after the mixture is cold. Compaction of the asphalt-concrete mixture in hot temperature (150ºC), based on mechanical characteristics (stability, flow, and Marshall Quotient), has better performance than that compacted in cold temperature (30ºC). However, compaction in both hot and cold temperatures, based on their volumetric characteristics, does not meet the requirements for use as road pavements. The performance of the asphalt mixture can be improved by giving time in the process of softening the asphalt content in Asbuton


2019 ◽  
Author(s):  
Teng Man

The compaction of asphalt mixture is crucial to the mechanical properties and the maintenance of the pavement. However, the mix design, which based on the compaction properties, remains largely on empirical data. We found difficulties to relate the aggregate size distribution and the asphalt binder properties to the compaction behavior in both the field and laboratory compaction of asphalt mixtures. In this paper, we would like to propose a simple hybrid model to predict the compaction of asphalt mixtures. In this model, we divided the compaction process into two mechanisms: (i) visco-plastic deformation of an ordered thickly-coated granular assembly, and (ii) the transition from an ordered system to a disordered system due to particle rearrangement. This model could take into account both the viscous properties of the asphalt binder and grain size distributions of the aggregates. Additionally, we suggest to use the discrete element method to understand the particle rearrangement during the compaction process. This model is calibrated based on the SuperPave gyratory compaction tests in the pavement lab. In the end, we compared the model results to experimental data to show that this model prediction had a good agreement with the experiments, thus, had great potentials to be implemented to improve the design of asphalt mixtures.


2012 ◽  
Vol 509 ◽  
pp. 209-214
Author(s):  
Shao Peng Wu ◽  
Pan Pan ◽  
Ming Yu Chen

With the widespread application of asphalt mixture, current demand from transportation managers for construction and maintenance of their pavement network consumes large numbers of aggregates. If agencies excessively favor to some certain kinds of excellent aggregates, the cost of construction could be considerably expensive. The major objective of this study is to determine the feasibility of utilizing dacite in asphalt mixtures. By means of Marshall, freeze-thaw, rutting and three-point bending tests, the performances of dacite and basalt asphalt mixture are compared. The results of the testing illustrate that dacite asphalt mixture is more susceptible to gradation and asphalt content than basalt asphalt mixture. Meanwhile it is showed that the performances of dacite asphalt mixture can be improved greatly with the involvement of additives including active mineral powder and cement. Furthermore, it is validated that dacite can be used as alternative aggregate in asphalt mixture.


2021 ◽  
Vol 1023 ◽  
pp. 121-126
Author(s):  
Van Bach Le ◽  
Van Phuc Le

Although small amount of binder in asphalt concrete mixture may commonly range from 3.5 to 5.5% of total mixture as per many international specifications, it has a significant impact on the total cost of pavement construction. Therefore, this paper investigated the effects of five carbon nanotubes contents of 0.05%, 0.1%, 0.15%, 0.2%, 0.25% by asphalt weight as an additive material for binder on performance characteristics of asphalt mixtures. Performance properties of CNTs modified asphalt mixtures were investigated through the Marshall stability (MS) test, indirect tensile (IDT) test, static modulus (SM) test, wheel tracking (WT) test. The results indicated that asphalt mixtures with CNT modified binder can improve both the rutting performance, IDT strength and marshall stability of tested asphalt mixtures significantly at higher percentages of carbon nanotubes. However, the issue that should be considered is the construction cost of asphalt pavement. Based on the asphalt pavement structural analysis and construction cost, it can be concluded that an optimum CNT content of 0.1% by asphalt weight may be used as additive for asphalt binder in asphalt mixtures.


Asphalt pavement is typically susceptible to moisture damage. However, it could be improved with the incorporation of additives or modifiers through binder modifications. The objective of the study is to assess the effect of adhesion promoters, namely PBL and M5000, onto the Hot Mix Asphalt (HMA). The performance of asphalt mixture has been assessed in terms of the service characteristics, the bonding properties, and mechanical performances. The service characteristics were assessed through the Workability Index (WI) and Compaction Energy Index (CEI) to evaluate the ease of asphalt mixture during the mixing and compaction stage. The bonding properties of the modified asphalt mixtures were determined using the boiling water test and static water immersion test to signify the degree of coating after undergoing specific conditioning period and temperature. The mechanical performances of the modified asphalt mixture were evaluated via Marshall stability, semi-circular bending, and modified Lottman tests. All specimens were prepared by incorporating adhesion promoters at the dosage rates of 0.5% and 1.0% by weight of asphalt binder. From the investigation, the bonding properties significantly improved for the modified asphalt mixture compared to the control mixture. The WI of the modified asphalt mixture increased while the CEI decreased in comparison to the control specimen. This implies the workability of modified asphalt mixture is better and requires less energy to be compacted. Modified asphalt mixture generally had better mechanical performance. Therefore, it can be deduced that the asphalt mixture with adhesion promoters have better overall performance than the control mixture.


Author(s):  
Moses Akentuna ◽  
Louay N. Mohammad ◽  
Sanchit Sachdeva ◽  
Samuel B. Cooper ◽  
Samuel B. Cooper

Moisture damage of asphalt mixtures is a major distress affecting the durability of asphalt pavements. The loaded wheel tracking (LWT) test is gaining popularity in determining moisture damage because of its ability to relate laboratory performance to field performance. However, the accuracy of LWT’s “pass/fail” criteria for screening mixtures is limited. The objective of this study was to evaluate the capability of the LWT test to identify moisture susceptibility of asphalt mixtures with different moisture conditioning protocols. Seven 12.5 mm asphalt mixtures with two asphalt binder types (unmodified PG 67-22 and modified PG 70-22), and three aggregate types (limestone, crushed gravel, and a semi-crushed gravel) were utilized. Asphalt binder and mixture samples were subjected to five conditioning levels, namely, a control; single freeze–thaw-; triple freeze–thaw-; MiST 3500 cycles; and MiST 7000 cycles. Frequency sweep at multiple temperatures and frequencies, and multiple stress creep recovery tests were performed to evaluate asphalt binders. LWT test was used to evaluate the asphalt mixture samples. Freeze–thaw and MiST conditioning resulted in an increase in stiffness in the asphalt binders as compared with the control. Further, freeze–thaw and MiST conditioning resulted in an increase in rut depth compared with the control asphalt mixture. The conditioning protocols evaluated were effective in exposing moisture-sensitive mixtures, which initially showed compliance with Louisiana asphalt mixture design specifications.


Author(s):  
Ben C. Cox ◽  
Jonathan Easterling ◽  
W. Griffin Sullivan ◽  
Alex Middleton ◽  
Isaac L. Howard

In recent years, the asphalt paving industry has been strained by numerous factors including increased asphalt binder costs, funding that has not kept up with material costs, increased societal pressure to recycle, and deteriorating pavement networks. Mix design should account for the market in which it is used, which is very different now than when today’s volumetric mix design practices were developed (many of the aforementioned factors were less present). Given this reality, a statewide database of all 1,452 approved mix designs in Mississippi from 2005 to 2018 was compiled and analyzed, and the objective of this paper is to present findings, trends, and unintended consequences of exclusive reliance on volumetrics. With volumetrics-only mix design, asphalt content is primarily controlled by voids in mineral aggregate (VMA), which is influenced by aggregate bulk specific gravity (Gsb). Minor Gsb deviations (i.e., within AASHTO d2 s limits), can significantly affect VMA, so much so that 99% of Mississippi’s mixes could be failing VMA while reported VMA passes. This allows mix manipulation and economization, with 0.8% asphalt content reductions possible while still meeting volumetric requirements. Recycled materials can exacerbate this issue, and common approaches to increase asphalt content (decreasing design gyration level or using finer gradations) are ineffective with fixed VMA requirements. Overall, the mix design database analysis agrees with numerous smaller studies but does so with an entire state’s actual practice. This presents a compelling case that volumetrics-only mix design has limitations, and supports ongoing efforts to reintegrate mechanical tests.


Sign in / Sign up

Export Citation Format

Share Document