scholarly journals Design and fabrication of a compact microstrip triplexer for wimax and wireless applications

2020 ◽  
Vol 41 (1) ◽  
Author(s):  
Abbas Rezaei ◽  
Salah I. Yahya ◽  
Leila Noori ◽  
Mohd Haizal Jamaluddin

A novel structure to design a microstrip triplexer for wireless and WiMAX applications is presented. To obtain a compact microstrip layout, step impedance resonators and coupled lines are used. The introduced triplexer has a size of 0.35λg×0.26λg, where λg is calculated at 2.3 GHz. Also, the obtained insertion losses are 0.78 dB, 1.1 dB and 0.62 dB at 2.3 GHz, 3.2 GHz and 3.6 GHz, respectively. The LC model of the presented resonator is investigated to tune three resonance frequencies by calculating numerical values of inductors and capacitors. Finally, the designed triplexer is simulated and measured.

2017 ◽  
Vol 9 (7) ◽  
pp. 1467-1471 ◽  
Author(s):  
Leila Noori ◽  
Abbas Rezaei

In this paper, a microstrip diplexer composed of two similar resonators is designed. The proposed resonator is consisting of four microstrip cells, which are connected to a coupled lines structure. In order to select a suitable geometric structure, first, all cells are assumed as undefined structures where there is a lack of basic information about their geometry and dimensions. Then, an equivalent LC circuit of the coupled lines is introduced and analyzed to estimate the general structure of the resonator respect to a requested resonance frequency. The proposed diplexer is designed to operate at 2.36 and 4 GHz for wireless applications. The insertion losses (S21 and S31) are decreased significantly at the resonance frequencies, so that they are 0.2 and 0.4 dB at 2.36 and 4 GHz, respectively. The designed diplexer is fabricated and measured and the measurement results are in a good agreement with the simulations.


2021 ◽  
Vol 9 (1) ◽  
pp. 103-108
Author(s):  
Salah I. Yahya ◽  
Abbas Rezaei

A dual-band bandpass-bandpass microstrip diplexer with very small size and good performance is designed in this work. The proposed diplexer has a novel structure which is introduced for the first time in this paper. In comparison with the previously reported diplexers, it occupies the most compact size of 0.002 λg2 (226.7 mm2), fabricated on 0.787 mm dielectric substrate height. The resonance frequencies of the presented diplexer are located at 0.76 GHz and 1.79 GHz making it suitable for the global system for mobile communications (GSM) applications. It has a wide flat channels with two fractional bandwidths (FBWs) of 41.1% and 50%. Another feature of the proposed diplexer is its ability to suppress the harmonics. It can attenuate the 1st to 7th harmonics. Moreover, it has low insertion losses and low group delays at both channels while the isolation and return losses are acceptable. Finally, the proposed diplexer is fabricated and measured to verify the simulation results, where a good agreement between the simulation and measurement results is obtained.


2020 ◽  
Vol 8 (2) ◽  
pp. 71-77
Author(s):  
Salah I. Yahya ◽  
Abbas Rezaei

In this work, a novel structure of a microstrip diplexer consisting of coupled patch cells is presented. It works at 2.5 GHz and 4.7 GHz for wireless applications. The proposed structure is well miniaturized with a compact area of 0.015 λg2, fabricated on 0.787 mm substrate height. It has two wide fractional bandwidths (FBWs) of 28% and 17.9% at the lower and upper channels, respectively. Another feature of the proposed design is the low group delays, which are better than 0.4 ns for both channels. Moreover, the designed diplexer can suppress the harmonics up to 10 GHz. Meanwhile, the insertion losses at both channels are low. The design method is based on proposing an approximated equivalent LC circuit of a novel basic resonator. The information about the resonator behavior is extracted from the even and odd modes analysis of the proposed equivalent LC circuit. Finally, our introduced diplexer is fabricated and measured to verify the simulation results, where the simulated and measured results are in good agreement.


2020 ◽  
Vol 41 (3) ◽  
Author(s):  
Farhad Fouladi ◽  
Abbas Rezaei

In this paper, a six-channel microstrip diplexer is designed and fabricated. It operates at 0.75/0.85/1/1.25/1.6/1.8 GHz for multi-service wireless communication systems. It consists of two stub-loaded resonators, which are integrated by coupled lines. The channels are close together, which makes the proposed diplexer suitable for frequency division duplex (FDD) schemes. The proposed structure has a compact size of 0.025 λg2 where λg is the guided wavelength calculated at 0.75 GHz. The other advantages of the introduced multi-channel diplexer are the low insertion losses of 1.62/1.27/0.43/0.53/1.26 and 1 dB, as well as good return losses of 26/26/25/25/21.7 and 22 dB at 0.75/0.85/1/1.25/1.6/1.8 GHz respectively. A good isolation of less than 22 dB is obtained between the channels. In order to design the presented diplexer a designing technique is used which is based on the proposing of an equivalent approximated LC model and calculating the inductors and capacitors. To confirm the simulation results, the introduced diplexer is fabricated and measured.


2014 ◽  
Vol 609-610 ◽  
pp. 972-976 ◽  
Author(s):  
Guo Li ◽  
Jian Qiu Huang ◽  
Cong Zhang ◽  
Li Feng Wang ◽  
Qing An Huang

This paper describes a wireless, passive humidity sensor, based upon an inductor-capacitor circuit. An inductor with a dual-metal structure is employed to reduce the size of the chip and decrease the complexity of the process. This paper analyzes the shortcomings of conventional sensors and gives a novel structure to overcome these disadvantages, and also use ADS to simulate and verify the feasibility of the new structure. Finally this paper presents a detail fabrication process of this novel sensor. According to the wireless applications, the LC resonant frequency of the LC circuit was designed at 30 ~ 150 and 350~450MHz.


2015 ◽  
Vol 8 (7) ◽  
pp. 1023-1029
Author(s):  
Fatemeh Sabaghi ◽  
Gholamreza Karimi ◽  
Arash Ahmadi

A novel ultra-wideband Microstrip bandpass filter using Radial Stub Loaded Resonator (RSLR) and interdigital coupled Lines is presented in this paper. The RSLR and decagonal patch form a resonator named M to create tuneable multiple notches in the passband for the suppression of Wireless Local Area Network systems’ interference. To realize sharp roll-off, two adjustable transmission nulls are located at the lower and upper frequencies out of the passband. Even and odd-mode analysis is presented to calculate modal resonance frequencies contributing to create the ultra-wide passband. Bessel function is employed to estimate the input impedance of the radial stub which is used in formulation of even and odd mode admittances. Simulated and measured results show a passband from 3.4 to 12 GHz (135% bandwidth around 6.39 GHz) with a rejection notch at 4.99 GHz is achieved with return losses better than 14 and 12 dB in the first and second passbands, respectively. The insertion loss is lower than 0.9 dB in the 90% of passband and rejection level is greater than 19 dB from 12.25 to 17.45 GHz.


2021 ◽  
Vol 9 (2) ◽  
pp. 83-90
Author(s):  
Salah I. Yahya ◽  
Abbas Rezaei ◽  
Yazen A. Khaleel

A novel configuration of a dual-band bandpass filter (BPF) working as a harmonic attenuator is introduced and fabricated. The proposed filter operates at 3 GHz, for UHF and SHF applications, and 6.3 GHz, for wireless applications. The presented layout has a symmetric structure, which consists of coupled resonators. The designing of the proposed resonator is performed by introducing a new LC equivalent model of coupled lines. To verify the LC model of the coupled lines, the lumped elements are calculated. The introduced filter has a wide stopband up to 85 GHz with 28th harmonic suppression, for the first channel, and 13th harmonic suppression, for the second channel. The harmonics are attenuated using a novel structure. Also, the proposed BPF has a compact size of 0.056 λg2. Having several transmission zeros (TZs) that improve the performance of the presented BPF is another feature. The proposed dual-band BPF is fabricated and measured to verify the design method, where the measurement results confirm the simulations.


2021 ◽  
Vol 23 (05) ◽  
pp. 806-815
Author(s):  
Nivedita Mishra ◽  
◽  
Dr. Saima Beg ◽  
Anand Kumar Gupta ◽  
◽  
...  

The following is an abstract of the paper, the mirror image design parameters and effective results for an antenna with a rectangular microstrip overlay using IE3D software is described that outcomes of the simulations and designs are displayed. The probe feed approach was used to generate the microstrip patch pattern. Such patch antennas have been investigated due to their large bandwidth and gain. This antenna is fabricated on an FR-4 epoxy substrate. This antenna’s performance and results are also matched to a standard rectangular patch antenna. Variables are utilized to improve the antenna’s simulation results are as position, space, length, and width of different mirror images T and I shaped antenna slots. The measured results from the simulated design show that the designed construction resonates at various closely separated frequencies that are within the frequency band allotment for wireless applications. At resonance frequencies of 2GHz to 3GHz, the bandwidth and return loss are significantly enhanced.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Md. Moniruzzaman ◽  
Mohammad Tariqul Islam ◽  
Ismail Hossain ◽  
Mohamed S. Soliman ◽  
Md Samsuzzaman ◽  
...  

AbstractIn this paper, a tuned metamaterial (MTM) consisting of a symmetric split ring resonator is presented that exhibits epsilon negative (ENG), near zero permeability and refractive index properties for multiband microwave applications. The proposed metamaterial is constituted on a Rogers (RT-5880) substrate with 1.57 mm thickness and the electrical dimension of 0.14λ × 0.14λ, where wavelength, λ is calculated at 4.2 GHz. The symmetric resonating patch is subdivided into four equal and similar quartiles with two interconnecting split rings in each quartile. The quartiles are connected at the center of the substrate with a square metal strip with which four tuning metal strips are attached. These tuning metal strips are acted as spacers between four quartiles of the resonator patch. Numerical simulation of the proposed design is executed in CST microwave studio. The proposed MTM provides four resonances of transmission coefficient (S21) at 4.20 GHz, 10.14 GHz, 13.15 GHz, and 17.1 GHz covering C, X and Ku bands with negative permittivity, near zero permeability and refractive index. The calculated effective medium ratio (EMR) is 7.14 at 4.2 GHz indicates its compactness. The resonance frequencies are selective in nature which can be easily tuned by varying the length of the tuning metal stubs. The equivalent circuit of the proposed MTM is modelled in Advanced Design Software (ADS) that exhibits a similar S21 compared with CST simulation. Surface current, electric and magnetic fields are analyzed to explain the frequency tuning property and other performances of the MTM. Compact size, ENG with near zero permeability and refractive index along with frequency selectivity through tuning provides flexibility for frequency selective applications of this MTM in wireless communications.


Author(s):  
Sanae Azizi ◽  
Mustapha El Halaoui ◽  
Abdelmoumen Kaabal ◽  
Saida Ahyoud ◽  
Adel Asselman

<p>In this paper, the bandwidth enhancement of bandpass filter (BPF) is proposed by utilizing defected microstrip structure (DMS). The initial micro strip BPF which is designed to have the bandwidth 1GHz with the center frequency of 3.5GHz is deployed on FR4 Epoxy dielectric substrate with overall size and thickness of 14mm x 24mm and 1.6mm, respectively. The proposed filter consists of two parallel coupled lines centred by ring-shaped, to enhance the bandwidth response, an attempt is carried out by applying DMS on the ligne center with a ring-shaped of initial filter. Here, the proposed DMS is constructed of the arrowhead dumbbell. Some parametrical studies to the DMS such as changing to obtain the optimum geometry of DMS with the desired bandwidth response. From the characterization result, it shows that the utilization of DMS on to the microstrip ligne of filter has widened 3dB bandwidth response up to 1.8GHz ranges from 2.55GHz to 4.35GHz yielding an enhanced wideband response for various wideband wireless applications.</p>


Sign in / Sign up

Export Citation Format

Share Document