Severe Acute Respiratory Syndrome Coronavirus 2: Manifestations of Disease and Approaches to Treatment and Prevention in Humans

Author(s):  
Michael E Watson, Jr ◽  
Kengo Inagaki ◽  
Jason B Weinberg

The coronavirus disease 2019 (COVID-19) pandemic was caused by a novel coronavirus, severe acute respiratory syndromecoronavirus 2 (SARS-CoV-2). This virus has challenged civilization and modern science in ways that few infectious diseases and natural disasters have previously, causing globally significant human morbidity and mortality and triggering economic downturns across financial markets that will be dealt with for generations. Despite this, the pandemic has also brought an opportunity for humanity to come together and participate in a shared scientific investigation. Clinically, SARS-CoV-2 is associated with lower mortality rates than other recently emerged coronaviruses, such as SARS-CoV and the Middle East respiratory syndrome coronavirus (MERS-CoV). However, SARS-CoV-2 exhibits efficient human-to-human spread, with transmission often occurring before symptom recognition; this feature averts containment strategies that had worked previously for SARS-CoV and MERS-CoV. Severe COVID-19 disease is characterized by dysregulated inflammatory responses associated with pulmonary congestion and intravascular coagulopathy leading to pneumonia, vascular insults, and multiorgan disease. Approaches to treatment have combined supportive care with antivirals, such as remdesivir, with immunomodulatory medications, including corticosteroids and cytokine-blocking antibody therapies; these treatments have advanced rapidly through clinical trials. Innovative approaches to vaccine development have facilitated rapid advances in design, testing, and distribution. Much remains to be learned about SARS-CoV-2 and COVID-19, and further biomedical research is necessary, including comparative medicine studies in animal models. This overview of COVID-19 in humans will highlight important aspects of disease, relevant pathophysiology, underlying immunology, and therapeutics that have been developed to date.

2020 ◽  
Vol 27 ◽  
Author(s):  
Anil K. Sharma ◽  
Varruchi Sharma ◽  
Arun Sharma ◽  
Suresh Pallikkuth

Background: Recent pandemic of coronavirus disease caused by a novel coronavirus SARS-CoV-2 in humans is the third outbreak by this family of viruses leading to an acute respiratory infection which has been a major cause of morbidity and mortality worldwide.The virus belongs to the genus, Betacoronavirus which has been recently reported to have significant similarity (>89%) to a severe acute respiratory syndrome (SARS)-related member of the Sarbecoviruses. Current researches are not sufficient to understand the etiological and immunopathobiological parameters related to COVID-19 so as to have a therapeutic solution to the problem. Methods: A structured search of bibliographic databases for peer-reviewed research literature has been carried out using focused review questions and inclusion/exclusion criteria. Further Standard tools were implied in order to appraise the quality of retrieved papers. The characteristic outcomes of screened research and review articles along with analysis of the interventions and findings of included studies using a conceptual framework have been described employing a deductive qualitative content analysis methodology. Results: This review systematically summarizes the immune-pathobiological characteristics, diagnosis, potential therapeutic options for the treatment and prevention of COVID-19 based on the current published literature and evidence. The current review has covered 125 peer-reviewed articles, majority of which are from high-income technically developed countries providing the most recent updates about the current understanding of the COVID-19 bringing all the significant findings and related researches together at a single platform. In addition, possible therapeutic interventions, treatment strategies and vaccine development initiatives to manage COVID-19 have been proposed. Conclusions: It is anticipated that this review would certainly assist the public in general and scientific community in particular to recognize and effectively deal with COVID-19, providing a reference guide for futuristic studies.


mSphere ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Chris R. Triggle ◽  
Devendra Bansal ◽  
Elmoubasher Abu Baker Abd Farag ◽  
Hong Ding ◽  
Ali A. Sultan

ABSTRACT Coronavirus disease 2019 (COVID-19) is caused by the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and first emerged in December 2019 in Wuhan, Hubei province, China. Since then, the virus has rapidly spread to many countries. While the outbreak in China appears to be in decline, the disease has spread across the world, with a daily increase in the number of confirmed cases and infection-related deaths. Here, we highlight (i) the lessons that have been learnt so far and how they will benefit reducing the impact of COVID-19 disease and (ii) an update on the status of drug treatment and vaccine development to prevent COVID-19 and potential future related pandemics. Although the mortality rate is clearly higher than for influenza, the rate does seem to vary from country to country, possibly reflecting differences in how rapidly local health authorities respond to isolate and effectively care for the affected population. Drugs are urgently needed for both prophylaxis and the treatment of severely ill patients; however, no proven effective therapies for SARS-CoV-2 currently exist. A number of drugs that have been approved for other diseases are being tested for the treatment of COVID-19 patients, but there is an absence of data from appropriately designed clinical trials showing that these drugs, either alone or in combination, will prove effective. There is also a global urgency to develop a vaccine against COVID-19, but development and appropriate testing will take at least a year before such a vaccine will be globally available. This review summarizes the lessons learnt so far from the COVID-19 pandemic, examines the evidence regarding the drugs that are being tested for the treatment of COVID19, and describes the progress made in efforts to develop an effective vaccine.


Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 443
Author(s):  
Zafar Mahmood ◽  
Hani Alrefai ◽  
Helal F. Hetta ◽  
Hidaya A. Kader ◽  
Nayla Munawar ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging coronavirus causing respiratory disease commonly known as COVID-19. This novel coronavirus transmits from human to human and has caused profound morbidity and mortality worldwide leading to the ongoing pandemic. Moreover, disease severity differs considerably from individual to individual. Investigating the virology of COVID-19 and immunological pathways underlying its clinical manifestations will enable the identification and design of effective vaccines and potential therapies. In this review, we explore COVID-19 virology, the contribution of the immune system (innate and adaptive) during infection and control of the virus. Finally, we highlight vaccine development and implications of immune system modulation for potential therapeutic interventions to design better therapeutic strategies to guide future cure.


2020 ◽  
Vol 18 ◽  
Author(s):  
Rina Das ◽  
Dinesh Kumar Mehta ◽  
Meenakshi Dhanawat

Abstract:: A novel virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), appeared and expanded globally by the end of year in 2019 from Wuhan, China, causing severe acute respiratory syndrome. During its initial stage, the disease was called the novel coronavirus (2019-nCoV). It was named COVID-19 by the World Health Organization (WHO) on 11 February 2020. The WHO declared worldwide the SARS-CoV-2 virus a pandemic on March 2020. On 30 January 2020 the first case of Corona Virus Disease 2019 (COVID-19) was reported in India. Now in current situation the virus is floating in almost every part of the province and rest of the globe. -: On the basis of novel published evidences, we efficiently summarized the reported work with reference to COVID-19 epidemiology, pathogen, clinical symptoms, treatment and prevention. Using several worldwide electronic scientific databases such as Pubmed, Medline, Embase, Science direct, Scopus, etc were utilized for extensive investigation of relevant literature. -: This review is written in the hope of encouraging the people successfully with the key learning points from the underway efforts to perceive and manage SARS-CoV-2, suggesting sailent points for expanding future research.


Immuno ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 30-66
Author(s):  
Niraj Kumar Jha ◽  
Madhan Jeyaraman ◽  
Mahesh Rachamalla ◽  
Shreesh Ojha ◽  
Kamal Dua ◽  
...  

An outbreak of “Pneumonia of Unknown Etiology” occurred in Wuhan, China, in late December 2019. Later, the agent factor was identified and coined as SARS-CoV-2, and the disease was named coronavirus disease 2019 (COVID-19). In a shorter period, this newly emergent infection brought the world to a standstill. On 11 March 2020, the WHO declared COVID-19 as a pandemic. Researchers across the globe have joined their hands to investigate SARS-CoV-2 in terms of pathogenicity, transmissibility, and deduce therapeutics to subjugate this infection. The researchers and scholars practicing different arts of medicine are on an extensive quest to come up with safer ways to curb the pathological implications of this viral infection. A huge number of clinical trials are underway from the branch of allopathy and naturopathy. Besides, a paradigm shift on cellular therapy and nano-medicine protocols has to be optimized for better clinical and functional outcomes of COVID-19-affected individuals. This article unveils a comprehensive review of the pathogenesis mode of spread, and various treatment modalities to combat COVID-19 disease.


2021 ◽  
Vol 1 (1) ◽  
pp. 100-115
Author(s):  
Kate Fischer ◽  
Malika Rakhmonova ◽  
Mike Tran

Abstract Since the spring of 2020 SARS-CoV-2, the novel coronavirus, has upended lives and caused a rethinking of nearly all social behaviors in the United States. This paper examines the ways in which the pandemic, shutdown, and gradual move towards “normal” have laid bare and obfuscated societal pressures regarding running out of time as it pertains to the residential university experience. Promised by movies, television, and older siblings and friends as a limited-time offer, the “typical” college experience is baked into the U.S. imaginary, reinforcing a host of notions of who “belongs” on campus along lines of race, class, and age. Fed a vision of what their whole lives “should be”, students who enter a residential four-year college are already imbued with a nostalgia for what is yet to come, hailed, in Althusser’s (2006[1977]) sense, as university subjects even before their first class. The upheaval of that subjecthood during the pandemic has raised important questions about the purpose of the college experience as well as how to belong to a place that is no longer there.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1507
Author(s):  
Chao-Nan Lin ◽  
Kuan Rong Chan ◽  
Eng Eong Ooi ◽  
Ming-Tang Chiou ◽  
Minh Hoang ◽  
...  

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus in humans, has expanded globally over the past year. COVID-19 remains an important subject of intensive research owing to its huge impact on economic and public health globally. Based on historical archives, the first coronavirus-related disease recorded was possibly animal-related, a case of feline infectious peritonitis described as early as 1912. Despite over a century of documented coronaviruses in animals, the global animal industry still suffers from outbreaks. Knowledge and experience handling animal coronaviruses provide a valuable tool to complement our understanding of the ongoing COVID-19 pandemic. In this review, we present an overview of coronaviruses, clinical signs, COVID-19 in animals, genome organization and recombination, immunopathogenesis, transmission, viral shedding, diagnosis, treatment, and prevention. By drawing parallels between COVID-19 in animals and humans, we provide perspectives on the pathophysiological mechanisms by which coronaviruses cause diseases in both animals and humans, providing a critical basis for the development of effective vaccines and therapeutics against these deadly viruses.


2021 ◽  
Vol 27 ◽  
Author(s):  
Elahe Aleebrahim-Dehkordi ◽  
Niloofar Deravi ◽  
Shirin Yaghoobpoor ◽  
Dariush Hooshyar ◽  
Mahmoud Rafieian-Kopaei

Background: It is known that Vitamin D can increase the body’s immunity against some viral infections. Many people around the world have vitamin D deficiency and, therefore, this has become a public concern whether vitamin D is an important factor protecting against COVID-19 infection. In this paper, the data about the roles of vitamin D on immunity and recovery from viral infections, especially novel Coronavirus disease (COVID-19) is reviewed. Methods: The electronic databases of Pubmed, Google Scholar, Research Gate, Excerpta Media Database (EMBASE) and Medical and Health Education (Medrix) were searched. Results: Vitamin D is considered an important factor in immune homeostasis. Various effects have been considered for this nutrient on the immune system, particularly because of vitamin D receptor (VDR) and Cytochrome P450 Family 27 Subfamily B Member 1 (CYP27B1) expression in most of the immune cells. Vitamin D can raise cellular immunity, reduce cytokine storm and enhance antioxidants production. It also has modulatory effects on Angiotensin-converting enzyme 2 (ACE2) receptors and might have protective functions against acute lung injuries, including COVID-19 infection. However, there are some articles against this positive effect. Conclusion: Vitamin D supplementation is reported to be effective in the enhancement of the immune system and might be effective in the treatment and prevention of COVID-19 infection, especially in those with its deficiency. However, it should be considered that vitamin D deficiency shows the overall health status of the patients and cannot be considered specific for COVID-19 infection.


2020 ◽  
Author(s):  
Saloni Chaurasia ◽  

As the clock ticks, more and more people are falling victim to COVID-19, and scientists are racing against time to find treatment and prevention strategies. But what’s stopping them? The answer comes from two primary problems. Firstly, coronaviruses (CoVs) are transmitted from person-to-person via respiratory droplets from an infected person’s coughs or sneezes, which makes them highly contagious (CDC, How COVID-19 Spreads, 2020). This can happen in minutes, and up to 25% of patients remain asymptomatic (Du, et al., 2020). This makes it difficult for healthcare workers and researchers to contain patients and establish contact tracing to isolate the infected population. Secondly, it is hard to target CoVs without damaging our cells. CoVs infect via spike protein, which binds to the ACE2 receptor located on the lung alveolar epithelial cells (Hoffmann, et al., 2020). Once they invade the cell, CoVs hijack the host cell’s mechanisms to replicate. Thus, it is hard to combat the virus without damaging the host cell. On the other hand, recent understanding of CoVs structure and mechanism of action enables the scientific world to create a cure or vaccine. The bad news is that these efforts will likely face the perennial hurdles of medical innovation and discovery, long timelines of clinical trials for drug repurposing, and vaccine development, sometimes fickle funding, and changing governmental priorities.


Author(s):  
Arunachalam Ramaiah ◽  
Vaithilingaraja Arumugaswami

ABSTRACTNovel Coronavirus (nCoV) outbreak in the city of Wuhan, China during December 2019, has now spread to various countries across the globe triggering a heightened containment effort. This human pathogen is a member of betacoronavirus genus carrying 30 kilobase of single positive-sense RNA genome. Understanding the evolution, zoonotic transmission, and source of this novel virus would help accelerating containment and prevention efforts. The present study reported detailed analysis of 2019-nCoV genome evolution and potential candidate peptides for vaccine development. This nCoV genotype might have been evolved from a bat-CoV by accumulating non-synonymous mutations, indels, and recombination events. Structural proteins Spike (S), and Membrane (M) had extensive mutational changes, whereas Envelope (E) and Nucleocapsid (N) proteins were very conserved suggesting differential selection pressures exerted on 2019-nCoV during evolution. Interestingly, 2019-nCoV Spike protein contains a 39 nucleotide sequence insertion relative to SARS-like bat-SL-CoVZC45/2017. Furthermore, we identified eight high binding affinity (HBA) CD4 T-cell epitopes in the S, E, M and N proteins, which can be commonly recognized by HLA-DR alleles of Asia and Asia-Pacific Region population. These immunodominant epitopes can be incorporated in universal subunit CoV vaccine. Diverse HLA types and variations in the epitope binding affinity may contribute to the wide range of immunopathological outcomes of circulating virus in humans. Our findings emphasize the requirement for continuous surveillance of CoV strains in live animal markets to better understand the viral adaptation to human host and to develop practical solutions to prevent the emergence of novel pathogenic CoV strains.


Sign in / Sign up

Export Citation Format

Share Document