scholarly journals Research focus and authorship trends over 40 years of publications by New Zealand Plant Protection

2016 ◽  
Vol 69 ◽  
pp. 39-47
Author(s):  
T.M. Stewart

In total 3053 contributions consisting of papers research notes and poster abstracts to the New Zealand Plant Protection Society from 1976 to 2015 were analysed for research and authorship trends The mean number of authors per paper per year increased from 18 to 43 over this period and institutional collaboration was increasingly common Proportionally there was a steady decrease in weed contributions and an increase in those featuring plant pathogens Control measures shifted from largely chemical solutions for single weed species to more integrated management programmes The number of papers on weed pest or disease biology incidence spread and impact were fairly constant over this period The scope of research widened considerably from a largely pastoral and arable focus to include environmental weeds and border biosecurity Topical research findings and review papers highlight the responsiveness of the plant protection research community to emerging novel issues

Author(s):  
Wafaa Mokhtari ◽  
Mohamed Achouri ◽  
Abdellah Remah ◽  
Noureddine Chtaina ◽  
Hassan Boubaker

In this chapter, the authors introduce two research axes: Part A, nano-biosensors as ad-hoc technologies designed to meet plant diagnostic sensitivity and specificity needs at point of care, and Part B, the study of the interaction of drought and infection stresses in crops investigating bio-control potential antagonists in developing integrated approach (IPM) for disease control measures in crops system. The first part will be revising most used nano-biosensors in plant pathogens detection using different platforms in greenhouses, on-field, and during postharvest. A special focus will be on optical and voltametric immuno/DNA sensors application in plant protection. The last part will present case studies of using nanoparticles functionalized with antibody/DNA for detecting pathogenic Pseudomonas sp, mosaic viruses, Botrytis cinereal, and Fusarium mycotoxins (DON). The second part will be interpreting experimental results of a case study on evaluating bio-control efficacy of local Trichoderma spp. using root dips treatment in Fusarium solani-green beans pathosystem as a model.


2020 ◽  
Author(s):  
Ravinder Singh Chandi

A vector is an organism capable of transmitting pathogens from one host to another. Among the plant pathogen transmitting agencies, insect vectors are most important and various plant pathogens in crops are transmitted by insects. Insect vectors are much more hazardous because small population of vector can spread the pathogen in whole of the field or to new areas. These are difficult to manage and hence multi-pronged strategy should be adopted. To effectively manage insect vectors of plant pathogens there is a need to look into the careful timing of application of chemicals, integrated treatment with vector sampling, estimation of threshold level of vectors, assessing infection of pathogen at varying period of the year and combining insecticides with other means of control such as resistant cultivars, natural enemies, inclusion of plant products, cultural practices, biotechnology tools etc. An integration of control measures will be more effective and ecologically sound than any single method to control insect vectors of plant pathogens. The control of insect vectors with the use of various tactics should be used to reduce the severity and to delay appearance of disease.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253934
Author(s):  
Hossein Ghanizadeh ◽  
Fengshuo Li ◽  
Lulu He ◽  
Kerry C. Harrington

Soliva sessilis is a troublesome annual weed species in New Zealand turfgrass. This weed has been controlled selectively in New Zealand turfgrass for many years using pyridine herbicides such as clopyralid. However, in some golf courses, the continuous application of pyridine herbicides has resulted in the selection of S. sessilis populations that are resistant to these herbicides. This study focuses on a clopyralid-resistant population of S. sessilis collected from a golf course with a long history of clopyralid applications. The resistant phenotype of S. sessilis was highly resistant to clopyralid (over 225-fold). It was also cross-resistant to dicamba, MCPA and picloram but not mecoprop. The level of resistance to dicamba was high (7-14-fold) but much lower (2-3-fold) for both MCPA and picloram. The phenotype was morphologically distinct from its susceptible counterpart. Individuals of the clopyralid-resistant phenotype had fewer lobes on their leaves and were slightly larger compared to the susceptible phenotype. Resistant individuals also had a larger leaf area and greater root dry weight than the susceptible plants. An evaluation of internal transcribed spacer (ITS) regions confirmed that clopyralid-resistant phenotypes are conspecific with S. sessilis. In summary, the cross-resistance to several auxinic herbicides in this S. sessilis phenotype greatly reduces chemical options for controlling it; thus, other integrated management practices may be needed such as using turfgrass competition to reduce weed germination. However, the morphological differences between resistant and susceptible plants make it easy to see, which will help with its management.


In this first edition book, editors Jolly and Jarvis have compiled a range of important, contemporary gifted education topics. Key areas of concern focus on evidence-based practices and research findings from Australia and New Zealand. Other contributors include 14 gifted education experts from leading Australian and New Zealand Universities and organisations. Exploring Gifted Education: Australian and New Zealand Perspectives, introduced by the editors, is well organised. Jolly and Jarvis’s central thesis in their introduction is to acknowledge the disparity between policy, funding and practice in Australia and New Zealand. Specifically, in relation to Australia, they note that a coordinated, national research agenda is absent, despite recommendations published by the Australian Senate Inquiry almost 20 years ago.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 284
Author(s):  
Jackline Abu-Nassar ◽  
Maor Matzrafi

Solanum rostratum Dunal is an invasive weed species that invaded Israel in the 1950s. The weed appears in several germination flashes, from early spring until late summer. Recently, an increase in its distribution range was observed, alongside the identification of new populations in the northern part of Israel. This study aimed to investigate the efficacy of herbicide application for the control of S. rostratum using two field populations originated from the Golan Heights and the Jezreel Valley. While minor differences in herbicide efficacy were recorded between populations, plant growth stage had a significant effect on herbicide response. Carfentrazone-ethyl was found to be highly effective in controlling plants at both early and late growth stages. Metribuzin, oxadiazon, oxyfluorfen and tembutrione showed reduced efficacy when applied at later growth stage (8–9 cm height), as compared to the application at an early growth stage (4–5 cm height). Tank mixes of oxadiazon and oxyfluorfen with different concentrations of surfactant improved later growth stage plant control. Taken together, our study highlights several herbicides that can improve weed control and may be used as chemical solutions alongside diversified crop rotation options. Thus, they may aid in preventing the spread and further buildup of S. rostratum field populations.


2020 ◽  
Vol 5 (1) ◽  
pp. 404-440 ◽  
Author(s):  
Mehrdad Alizadeh ◽  
Yalda Vasebi ◽  
Naser Safaie

AbstractThe purpose of this article was to give a comprehensive review of the published research works on biological control of different fungal, bacterial, and nematode plant diseases in Iran from 1992 to 2018. Plant pathogens cause economical loss in many agricultural products in Iran. In an attempt to prevent these serious losses, chemical control measures have usually been applied to reduce diseases in farms, gardens, and greenhouses. In recent decades, using the biological control against plant diseases has been considered as a beneficial and alternative method to chemical control due to its potential in integrated plant disease management as well as the increasing yield in an eco-friendly manner. Based on the reported studies, various species of Trichoderma, Pseudomonas, and Bacillus were the most common biocontrol agents with the ability to control the wide range of plant pathogens in Iran from lab to the greenhouse and field conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marta Matuszewska ◽  
Tomasz Maciąg ◽  
Magdalena Rajewska ◽  
Aldona Wierzbicka ◽  
Sylwia Jafra

AbstractPseudomonas donghuensis P482 is a tomato rhizosphere isolate with the ability to inhibit growth of bacterial and fungal plant pathogens. Herein, we analysed the impact of the carbon source on the antibacterial activity of P482 and expression of the selected genes of three genomic regions in the P482 genome. These regions are involved in the synthesis of pyoverdine, 7-hydroxytropolone (7-HT) and an unknown compound (“cluster 17”) and are responsible for the antimicrobial activity of P482. We showed that the P482 mutants, defective in these regions, show variations and contrasting patterns of growth inhibition of the target pathogen under given nutritional conditions (with glucose or glycerol as a carbon source). We also selected and validated the reference genes for gene expression studies in P. donghuensis P482. Amongst ten candidate genes, we found gyrB, rpoD and mrdA the most stably expressed. Using selected reference genes in RT-qPCR, we assessed the expression of the genes of interest under minimal medium conditions with glucose or glycerol as carbon sources. Glycerol was shown to negatively affect the expression of genes necessary for 7-HT synthesis. The significance of this finding in the light of the role of nutrient (carbon) availability in biological plant protection is discussed.


2021 ◽  
Vol 187 ◽  
pp. 103025
Author(s):  
Val Snow ◽  
Daniel Rodriguez ◽  
Robyn Dynes ◽  
William Kaye-Blake ◽  
Thilak Mallawaarachchi ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 146
Author(s):  
Leonardo F. Rocha ◽  
Karla L. Gage ◽  
Mirian F. Pimentel ◽  
Jason P. Bond ◽  
Ahmad M. Fakhoury

The soybean cyst nematode (SCN; Heterodera glycines Ichinohe) is a major soybean-yield-limiting soil-borne pathogen, especially in the Midwestern US. Weed management is recommended for SCN integrated management, since some weed species have been reported to be hosts for SCN. The increase in the occurrence of resistance to herbicides complicates weed management and may further direct ecological–evolutionary (eco–evo) feedbacks in plant–pathogen complexes, including interactions between host plants and SCN. In this review, we summarize weed species reported to be hosts of SCN in the US and outline potential weed–SCN management interactions. Plants from 23 families have been reported to host SCN, with Fabaceae including most host species. Out of 116 weeds hosts, 14 species have known herbicide-resistant biotypes to 8 herbicide sites of action. Factors influencing the ability of weeds to host SCN are environmental and edaphic conditions, SCN initial inoculum, weed population levels, and variations in susceptibility of weed biotypes to SCN within a population. The association of SCN on weeds with relatively little fitness cost incurred by the latter may decrease the competitive ability of the crop and increase weed reproduction when SCN is present, feeding back into the probability of selecting for herbicide-resistant weed biotypes. Therefore, proper management of weed hosts of SCN should be a focus of integrated pest management (IPM) strategies to prevent further eco–evo feedbacks in the cropping system.


Sign in / Sign up

Export Citation Format

Share Document