scholarly journals How a learning factory approach can help to increase the un- derstanding of the application of machine learning on produc- tion planning and control tasks.

2021 ◽  
pp. 125-142
Author(s):  
Alexander Rokoss ◽  
◽  
Kathrin Kramer ◽  
Matthias Schmidt

Technological progress and increasing digitalization offer many opportunities to production companies, but also continually present them with new challenges. The automation of processes is progressing in manufacturing areas and technical support systems, such as human-robot collaboration, are leading to significant changes in workflows. However, in other areas of companies large parts of the work are still done by humans. This is partly the case with the use of production data. Although much data is already collected and sorted automatically, the final evaluation of this data and especially decision-making is often done by humans. In particular, this is the case for decisions that cannot clearly be made based on conditional programming. The use of machine learning (ML) represents a promising approach to make such complex decisions automatically. A sharp increase in scientific publications in the recent years demonstrates the trend that more and more companies and institutions are looking into the use of machine learning in production. Since ML is beeing applied across several industries, the resulting massive shortage of skilled workers in the field of ML has to be addressed in short and medium terms by training and educating existing employees in production companies. A contemporary approach to building competencies in dealing with problems in the manufacturing sector is the use of learning factories as a knowledge transfer enabler. They offer learners the opportunity to try out methods in a realistic environment without having to fear negative consequences for the company. The results of actions performed by participants can be experienced directly without any time delay, resulting in better learning results compared to conventional face-to-face teaching. This chapter shows how learning factories can support teaching machine learning methods in the field of PPC. For this purpose, the determination of lead times using real data sets is addressed with ML-based methods. Parallelly, the competencies required for the respective tasks were extracted. Based on this, elements of a learning factory were designed that simplifies the considered processes, so that the problem can be easily understood by learners. The last part of the chapter describes several learning factory game phases aiming on teaching the identified competencies. The described learning factory enables participants to setup ML-based projects in the context of manufacturing.

2020 ◽  
pp. 1-17
Author(s):  
Francisco Javier Balea-Fernandez ◽  
Beatriz Martinez-Vega ◽  
Samuel Ortega ◽  
Himar Fabelo ◽  
Raquel Leon ◽  
...  

Background: Sociodemographic data indicate the progressive increase in life expectancy and the prevalence of Alzheimer’s disease (AD). AD is raised as one of the greatest public health problems. Its etiology is twofold: on the one hand, non-modifiable factors and on the other, modifiable. Objective: This study aims to develop a processing framework based on machine learning (ML) and optimization algorithms to study sociodemographic, clinical, and analytical variables, selecting the best combination among them for an accurate discrimination between controls and subjects with major neurocognitive disorder (MNCD). Methods: This research is based on an observational-analytical design. Two research groups were established: MNCD group (n = 46) and control group (n = 38). ML and optimization algorithms were employed to automatically diagnose MNCD. Results: Twelve out of 37 variables were identified in the validation set as the most relevant for MNCD diagnosis. Sensitivity of 100%and specificity of 71%were achieved using a Random Forest classifier. Conclusion: ML is a potential tool for automatic prediction of MNCD which can be applied to relatively small preclinical and clinical data sets. These results can be interpreted to support the influence of the environment on the development of AD.


2017 ◽  
Vol 8 (2) ◽  
pp. 30-40 ◽  
Author(s):  
Peter Nielsen ◽  
Zbigniew Michna ◽  
Brian Bruhn Sørensen ◽  
Ngoc Do Anh Dung

AbstractLead times and their nature have received limited interest in literature despite their large impact on the performance and the management of supply chains. This paper presents a method and a case implementation of the same, to establish the behavior of real lead times in supply chains. The paper explores the behavior of lead times and illustrates how in one particular case they can and should be considered to be independent and identically distributed (i.i.d.). The conclusion is also that the stochastic nature of the lead times contributes more to lead time demand variance than demand variance.


2020 ◽  
Vol 110 (04) ◽  
pp. 220-225
Author(s):  
Matthias Schmidt ◽  
Janine Tatjana Maier ◽  
Mark Grothkopp

Produzierende Unternehmen stehen in einem dynamischen Umfeld vor der Herausforderung eine zunehmende Datenmenge effizienter zu verarbeiten. In diesem Zusammenhang werden häufig Ansätze des maschinellen Lernens (ML) diskutiert. Der Beitrag stellt eine umfassende Aufarbeitung des Stands der Forschung bezogen auf den Einsatz von ML-Ansätzen in der Produktionsplanung und -steuerung (PPS) bereit. Daraus lässt sich der Forschungsbedarf in den einzelnen Aufgabengebieten der PPS ableiten.   In a dynamic environment, manufacturing companies face the challenge of processing an increasing amount of data more efficiently. In this context, approaches of machine learning (ML) are often discussed. This paper provides a comprehensive review of the state of the art regarding the use of ML approaches in production planning and control (PPC). Based on this, the need for research in the individual task areas of PPC can be derived.


2019 ◽  
Vol 10 (1) ◽  
pp. 274 ◽  
Author(s):  
Javier Gejo García ◽  
Sergio Gallego-García ◽  
Manuel García-García

At the moment, many engineer-to-order manufacturers are under pressure, the overcapacity in many sectors erodes prices and many companies, especially in Europe have gone into recent years in bankruptcy. Due to the increasing competition as well as the new customer requirements, the internal processes of an ETO company play an essential role in order to achieve a unique selling proposition (USP). Therefore this paper exposes how the production planning and control of an engineer-to-order manufacturer can be designed in order to increase its OTD (order-to-delivery) rate as well as decrease the WIP (work-in-progress) and the production lead times. To prove the optimized planning logic, it was applied in a simulation case study and based on the results; the conclusions about its potential are derived.


2021 ◽  
pp. 165-185
Author(s):  
Manuel Woschank ◽  
Patrick Dallasega ◽  
Johannes A. Kapeller

AbstractThe integrated planning and control of logistics processes can be seen as one of the basic prerequisites for the successful implementation of smart production systems and smart and lean supply chains, as well. Therefore, modern Industry 4.0 approaches are mainly focusing on (1) the principles of decentralization and (2) the usage of real-time data to improve the overall logistics performance in terms of promised delivery dates, work in progress, capacity utilization, and lead-times. In this context, this chapter systematically evaluates the application of decentralized production planning and control strategies, e.g., KANBAN and CONWIP, in comparison with traditional approaches, like MRP. Moreover, the impact of real-time data usage in production planning and control systems on lead-times and work in progress is investigated using a discrete event simulation based on primary data from a make to order manufacturer. The results of this industrial case study research confirm the significant potential that lies in smart production systems and smart and lean supply chains and, therefore, in the introduction of Industry 4.0 technologies and technological concepts in production and logistics systems.


2021 ◽  
Vol 70 ◽  
pp. 409-472
Author(s):  
Marc-André Zöller ◽  
Marco F. Huber

Machine learning (ML) has become a vital part in many aspects of our daily life. However, building well performing machine learning applications requires highly specialized data scientists and domain experts. Automated machine learning (AutoML) aims to reduce the demand for data scientists by enabling domain experts to build machine learning applications automatically without extensive knowledge of statistics and machine learning. This paper is a combination of a survey on current AutoML methods and a benchmark of popular AutoML frameworks on real data sets. Driven by the selected frameworks for evaluation, we summarize and review important AutoML techniques and methods concerning every step in building an ML pipeline. The selected AutoML frameworks are evaluated on 137 data sets from established AutoML benchmark suites.


Author(s):  
Liliya Mezhevska

Currently, there are a number of negative consequences of the moratorium that need to be addressed immediately, amendments to existing legislation because the moratorium hinders rural development and agriculture, prevents the redistribution of land resources to more efficient owners and producers, reduces rent and owners' incomes, and limits access to credit resources. Under such conditions, there is no land market, farmers and small landowners have no incentive to invest. As a result, a significant part of land plots is leased by large companies, which have a significant impact on the social structure of the village. Land productivity is far from Ukraine's potential, as long-term investments are needed to improve it. Foreign investors, companies with the necessary knowledge and equipment, are reluctant to invest in Ukraine due to imperfect legal guarantees. A favorable legal climate is needed to improve the agricultural sector. In turn, lifting the moratorium could lead to economic growth. But it should be remembered that lifting the moratorium on land is largely not an economic but a political decision, as there is a risk of mass purchase of Ukrainian lands by foreigners, resulting in the complete loss of ownership and control of their territory. Thus, analyzing the current legislation of Ukraine, scientific publications of famous scientists, economists, politicians, lawyers, given their positive and negative statements about the moratorium on the sale of agricultural land, we can conclude that there are both threats and prospects for a land moratorium.


Author(s):  
Olumide Emmanuel Oluyisola ◽  
Swapnil Bhalla ◽  
Fabio Sgarbossa ◽  
Jan Ola Strandhagen

AbstractIn furtherance of emerging research within smart production planning and control (PPC), this paper prescribes a methodology for the design and development of a smart PPC system. A smart PPC system uses emerging technologies such as the internet of things, big-data analytics tools and machine learning running on the cloud or on edge devices to enhance performance of PPC processes. It achieves this by using a wider range of data sources from the production system, capturing and utilizing the experience of production planners, using analytics and machine learning to harness insights from the data and allowing dynamic and near real-time action to the continuously changing production system. The proposed methodology is illustrated with a case study in a sweets and snacks manufacturing company, to highlight the key considerations and challenges production managers might face during its application. The case further demonstrates considerations for scalability and flexibility via a loosely coupled, service-oriented architecture and the selection of fitting algorithms respectively to address a business requirement for a short-term, multi-criteria and event-driven production planning and control solution. Finally, the paper further discusses the challenges of PPC in smart manufacturing and the importance of fitting smart technologies to planning environment characteristics.


1987 ◽  
Vol 17 (2) ◽  
pp. 171-177 ◽  
Author(s):  
Björn Ajne ◽  
Harry Wide

AbstractSome reasons are given for paying special attention to the gross cost of catastrophe claims in planning and control. A method is then described of defining catastrophe claims and estimating their expected cost. The various steps in applying the method to real data and its performance for planning and control are discussed and illustrated in conjunction with an investigation carried out on a company portfolio.


2021 ◽  
Vol 343 ◽  
pp. 05010
Author(s):  
Adina Sârb ◽  
Cristina Burja Udrea ◽  
Daniela Nagy – Oniţa ◽  
Liliana Itul ◽  
Maria Popa

According to ISO 9000, a quality management system is part of a set of related or interacting elements of an organization that sets policies and objectives, as well as the processes necessary to achieve the quality objectives. Quality is the extent to which a set of intrinsic characteristics of an object meets the requirements. Based on these definitions, the factory, considered in this paper, S.C. APULUM S.A.,decided to implement a quality management system since 1998. Subsequently, the organization’s attention is focus on the continuous improvement of the implemented quality management system. The purpose of this paper is to study the percent of specified defects specific to ceramic products in the future to improve the quality management system. In this regard, machine learning techniques were applied for defects forecasting for different types of products: mugs, pressed plates and jiggered plates. The experimental evaluation was performed on real data sets that contain percentages about different types of defects collected in 2018-2019. The experimental results show that for each type of product exists an algorithm that forecasts the future defects.


Sign in / Sign up

Export Citation Format

Share Document