scholarly journals The role of epoxidation on Camelina sativa biodiesel properties

2014 ◽  
Vol 16 (6) ◽  
pp. 1076-1084

<div> <p>An unstandarised biodiesel made from Camelina<em> sativa </em>oil, having over a 90 percent by weight of unsaturated fatty acids, were transformed into an epoxidised biodiesel that satisfy the requirements for iodine value, linolenic acid methyl ester content, cetane number, polyunsaturated fatty acids content, and viscosity established by the EN 14214 and ASTM D 6751 standards. The epoxidation reaction was carried out at 60 &deg;C using peroxyacetic acid generated <em>in situ</em> and sulphuric acid as catalyst. A conversion of 60 % of double bonds was reached after 3 hours of reaction. However, only one hour was needed to get standard requirements and to avoid the epoxide ring opening side reaction that leads to hydroxyl groups. Besides, it was also observed that the formation of hydroxyl groups increases the kinematic viscosity of the biodiesel, being deleterious for the biodiesel properties.&nbsp;</p> </div> <p>&nbsp;</p>

Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4609
Author(s):  
Adel W. Almutairi

In the present study, the marine microalga Tisochrysis lutea was cultivated mixotrophically in F2 growth medium with sodium acetate as exogenous carbon source. The medium was composed of different concentrations of nitrogen to determine the impact of nitrogen depletion on cellular growth and chemical composition. Nitrogen depletion led to severely decreased growth and protein content. However, mild nitrogen depletion (0.22 mM NaNO3) led to maximum lipid yield. The fatty acid methyl ester profile also showed increased unsaturation as the nitrogen content decreased. Growth in nitrogen-free medium increased the proportions of mono- and poly-unsaturated fatty acids, while the proportion of saturated fatty acids decreased. Growth under all tested nitrogen levels showed undetectable fatty acids with ≥4 double bonds, indicating these fatty acids had oxidative stability. In addition, all tested nitrogen concentrations led to specific gravity, kinematic viscosity, iodine value, and cetane number that meet the standards for Europe and the U.S.A. However, growth in the presence of nitrogen deficiency enhanced the higher heating value of the resulting biodiesel, a clear advantage from the perspective of energy efficiency. Thus, mixotrophic cultivation of T. lutea with nitrogen limitation provides a promising approach to achieve high lipid productivity and production of high-quality biodiesel.


2016 ◽  
Vol 8 (6) ◽  
pp. 149 ◽  
Author(s):  
Cunfang Wang ◽  
Xinman Lou ◽  
Jianmin Wang

<p>In this study, the fatty acid profile and fat stability for seven consecutive days of raw milk and pasteurized milk from Laoshan goats have been evaluated by gas chromatography-mass spectrometry (GC-MS) after fatty acid methyl ester. The results showed that the concentrations of short chain fatty acids (SCFA) and saturated fatty acids (SFA) significantly increased by 47.36% and 11.68% after pasteurization respectively, while the concentrations of unsaturated fatty acids (UFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) decreased by 26.08%, 26.45% and 22.15% respectively. The C10:0 (5.39%-8.57%), C12:0 (3.13%-5.28%), C14:0 (8.12%-11.87%), C16:0 (25.59%-28.53%), C18:0 (14.60-13.69%) and C18:1 (33.91-24.92%) are the most predominant fatty acids of Laoshan goat milk with significant differences. Moreover, the fat stabillity for seven consecutive days of raw milk and pasteurized milk was detected by sedimentation rate (R). The fat stability in pasteurized milk was more stable than that in raw milk, the sedimentation rate of raw milk and pasteurized milk consisted in a progressive decrease in the seven days by 82.99% and 79.77% respectively. What’s more, significant difference was observed from 1st day to 4th day between raw milk and pasteurized milk, however, there was no significance from 5th to 7th. This is the first report to fully characterize the fatty acid contents and fat stability of Laoshan goat raw milk and its pasteurized milk and it provided a certain theoretical basis for the research and development of goat milk functional product.</p>


2012 ◽  
Vol 56 (2) ◽  
pp. 255-259
Author(s):  
Jolanta Zalejska–Fiolka ◽  
Aleksandra Kasperczyk ◽  
Sławomir Kasperczyk ◽  
Barbara Stawiarska-Pięta ◽  
Rafał Fiolka ◽  
...  

Abstract For 24 weeks, rabbits were fed feed containing non-oxidised or oxidised rapeseed oil. At the beginning of the experiment and every six weeks the rabbits were weighed and blood was taken. After the experiment was completed, their liver was dissected for biochemical and histological examinations. The activity of alanine aminotransferase, aspartate aminotrasferase, glutamate dehydrogenase, sorbitol dehydrogenase, and aldolase in blood plasma and liver were determined. Enzymes of the protein and liver metabolic pathways were determined using kinetic and spectrophotometric methods. The content of fatty acids was determined by means of fatty acid methyl ester concentration measurement using gas chromatography. It was found that the applied diet with oxidised rapeseed oil caused the development of slight liver steatosis and disturbances in the activity of enzymes involved in the liver pathways, despite the fact that it was a balanced diet, and differed only in the ratio of saturated to unsaturated fatty acids. The obtained results indicate that more profound oil oxidation and its increased supply in diet may result in the development of liver steatosis.


2021 ◽  
pp. 346-362
Author(s):  
Salim Najmaldain Saber ◽  
Hikmat Ali Mohamad ◽  
Madzlan Aziz

The core objective of this study was to investigate the physicochemical characteristics and fatty acid composition of the oils of sunflower, olive, virgin coconut and ginger oils, as well as the separation of their unsaturated fatty acids. The data indicated a significant variation in physicochemical properties (acid, saponification, ester, and iodine values) among oils. Transesterification process was carried out at a molar ratio of 1:7:0.1 of oil: methanol: KOH. Fatty acid methyl esters of oils were analyzed by infrared (IR) and gas chromatography–mass (GC-MS) spectrometry. Twelve fatty acids were identified, where the major fatty acid of  olive oil was found to be  oleic acid (89%), whereas those of sunflower and ginger oils were linoleic acid (80.9 %) and (79.3 %), respectively. Sunflower and olive oils were fractionated by 25% silver nitrate-impregnated silica gel column chromatography. By this method, linoleic acid methyl ester from sunflower and oleic acid methyl ester from olive oil were isolated with high purity percentages and yields. This study is significant for the development of food and pharmaceutical products.


2014 ◽  
Vol 19 (1) ◽  
Author(s):  
Sri Endang Purnami ◽  
Trijoko ◽  
Raras Toeti Pratiwi

AbstractSea urchin (Echinoidea) is an avertebrate animal whose habitat can be found from the intertidal to shallow subtidal areas. Sea urchin has a very important role in reef ecology, especially in intertidal and subtidal areas. Sea urchin gonad also can be consumed and has high economic value. The aim of this study was to determine the profile of fatty acid Sea urchin gonad in South Coral in Gunung Kidul (Daerah Istimewa Yogokarta) Gonad samples were taken from two sampling locations, those were four species from Sepanjang beach and one species from Wediombo coast. Fat was separated from the gonad using the method of Blight and Dyer (1959) and fatty acid methyl ester were prepared by direct transesterification reaction according to Morisson and Smith’s method (1964). Fatty acid methyl ester were separated and analysed by gas chromatography. The result showed that there are 10 types of fatty acid found in sea urchin gonad belonging to saturated and unsaturated fatty acid both MUFA (monounsaturated fatty acid) dan PUFA (polyunsaturated fatty acid). In all samples. The level of saturated fatty acids is higher than the unsaturated fatty acids, especially myristic (C14:0) and palmitic acid (C16:0).Keywords: Fatty acid, Sea Uechin, South Coral Gunung Kidul Daerah Istimewa YogyakartaAbstrakLandak laut (Echinodea) merupakan hewan avertebrata yang banyak dijumpai pada daerah pasang surut yang berbatu dan berpasir. Landak laut memiliki peranan yang sangat penting pada ekologi karang terutama di daerah pasang surut, selain itu gonadnya juga dapat dikonsumsi dan memiliki nilai ekonomi yang tinggi. Tujuan dari penelitian ini mengetahui keragaman spesies dan komposisi asam lemak gonad Landak laut yang ada di Pantai Selatan Kabupaten Gunung Kidul. Sample gonad diambil dari 2 lokasi sampling yaitu empat jenis dari Pantai Sepanjang dan satu jenis dari Pantai Wediombo. Lemak dipisahkan dari gonad menggunakan metode Blight and Dyer (1959) dan dimetilasi melalui metode Morison and Smith (1964). Kadar asam lemak gonad kemudian dianalisa dengan GC. Hasil analisa asam lemak sampel gonad ditemukan Asam lemak jenuh yang meliputi asam kaprilat (C8:0), asam miristat (C14:0), asam palmitat (C16:0), asam stearat (C18:0) dan asam arakhidat (C20:0). Asam lemak tidak jenuh antara lain asam oleat (C18:1n-9), asam palmitoleat (C16:1n-7), linoleat (C18:2n-8) dan asam eicosapentaenoat (C20: 5n-3). Hasil analisa menunjukkan bahwa kadar asam lemak jenuh lebih tinggi dibanding asam lemak tidak jenuh terutama asam miristat sebesar 27,20% dan palmitat 24,44% sedangkan asam lemak tak jenuh yang tinggi adalah asam Eicosapentaenoat sebesar 14,83%, keduanya ditemukan pada Colobocentrotus sp.2. Jenis Landak laut di Pantai Selatan Kabupaten Gunung Kidul sangat beragam sedangkan jenis asam lemak yang terkandung pada lima sampel gonadnya sama tetapi berbeda kadarnya.Kata kunci: Asam lemak, landak laut, karang Gunung Kidul Daerah Istimewa Yogyakarta


Separations ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 38
Author(s):  
Emerencia Mező ◽  
Anita Bufa ◽  
Csilla Páger ◽  
Viktória Poór ◽  
Tamás Marosvölgyi ◽  
...  

Knowledge of the type and level of saturated and unsaturated fatty acids in food and clinical matrices is of practical importance, but the wide variety of fatty acids makes analyses very complex. The discrimination of the geometric isomers of fatty acid needs proper and effective separation conditions. The efficiency of three different stationary phases was evaluated by GC–MS methods in the separation of fatty acids in their methyl ester forms. Significant differences were observed in the efficiencies of polysiloxane-based (non-polar HP-5MS and medium/high polarity DB-225MS) and ionic liquid-based (SLB-IL111) columns. Baseline separation of the geometric isomers of linoleic acid methyl ester was obtained by the extremely polar SLB-IL111 column, showing a preference over the other two columns. The optimization of the experimental conditions (response linearity, limit of detection, limit of quantification, system suitability, intraday and interday repeatability and accuracy) showed the separation power of the ionic liquid interaction in the analyses by using short (25–30 m long) columns. By deducting the general principles of the interaction, predictions can be made for the separation of other isomers. The results facilitate the precise identification of various types of fatty acids in real samples for nutritional information.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3077
Author(s):  
Oleksandra Shepel ◽  
Jonas Matijošius ◽  
Alfredas Rimkus ◽  
Kamil Duda ◽  
Maciej Mikulski

The present study is aimed at studying the energy and environmental performance at various engine loads (BMEP) with identical start of injection (SOI) for all fuel types. The combustion parameters for the fuel mixtures were analyzed using the AVL BOOST software (BURN subroutine). Five different blends were tested, consisting completely of renewable raw materials based on hydrotreated vegetable oil (HVO) and fatty acid methyl ester (FE100), and the properties of diesel fuel (D) were compared with respect to these blends. The mixtures were mixed in the following proportions: FE25 (FE25HVO75), FE50 (FE50HVO50), FE75 (FE75HVO25). In this study, diesel exhaust was found to produce higher NOx values compared to FE blends, with HVO being the lowest. Hydrocarbon and smoke emissions were also significantly lower for blends than for diesel. Possible explanations are the physical properties and fatty acid composition of fuel mixtures, affecting injection and further combustion. The results showed that blends containing more unsaturated fatty acids release more nitrogen oxides, thus having a lower thermal efficiency compared to HVO. No essential differences in CO emissions between D and HVO were observed. An increase in this indicator was observed at low loads for mixtures with ester. CO2 was reduced in emissions for HVO compared to the aforementioned blends and diesel. The results of the combustion analysis show that with a high content of unsaturated fatty acids, mixtures have a longer combustion time than diesel fuel.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7148
Author(s):  
Ayesha Mushtaq ◽  
Muhammad Asif Hanif ◽  
Muhammad Zahid ◽  
Umer Rashid ◽  
Zahid Mushtaq ◽  
...  

Biodiesel has attracted considerable interest as an alternative biofuel due to its many advantages over conventional petroleum diesel such as inherent lubricity, low toxicity, renewable raw materials, biodegradability, superior flash point, and low carbon footprint. However, high production costs, poor low temperature operability, variability of fuel quality from different feedstocks, and low storage stability negatively impact more widespread adoption. In order to reduce production costs, inexpensive inedible oilseed alternatives are needed for biodiesel production. This study utilized inedible tamarind (Tamarind indica) seed oil as an alternative biodiesel feedstock, which contained linoleic (31.8%), oleic (17.1%), and lauric (12.0%) acids as the primary fatty acids. A simple and cost-effective high vacuum fractional distillation (HVFD) methodology was used to separate the oil into three fractions (F1, F2, and F3). Subsequent transesterification utilizing basic, acidic, and enzymatic catalysis produced biodiesel of consistent quality and overcame the problem of low temperature biodiesel performance. The most desirable biodiesel with regard to low temperature operability was produced from fractions F2 and F3, which were enriched in unsaturated fatty acids relative to tamarind seed oil. Other properties such as density and cetane number were within the limits specified in the American and European biodiesel standards.


2019 ◽  
Vol 811 ◽  
pp. 40-46 ◽  
Author(s):  
Sutrisno ◽  
Rini Retnosari ◽  
Siti Marfu'ah ◽  
Fauziatul Fajaroh

The research was conducted to investigate the oil and fatty acids contained in Tamarindus indica Linn (tamarind) seeds oil. Tamarind seeds oil was isolated by extraction and fractionation. The fatty acids content in oil were identified as fatty acid methyl ester. Fatty acid methyl ester was produced from trans-esterification reaction of tamarind seed oil with methanol and boron trifluoride catalyst (MeOH/BF3). Identification of fatty acid methyl ester was carried out by gas chromatograph mass spectrometry (GC-MS). The fatty acids in the Tamarindus indica seed oil are saturated and unsaturated fatty acids. The saturated fatty acids are octanoic (12.66%), decanoic (1.68%), dodecanoic (25.18%), tetradecanoic (5.17-7.83%), hexadecanoic (9.90-16.06%), octadecanoic (3.82-4.80%), eicosanoic (0.39-1.55%), docosanoic (1.00-2.01%), and tetracosanoic (1.92-4.54%) acids. The unsaturated fatty acids are 11-octadecenoic (19.93%), 11-eicosenoic (0.76-1.03%), 9,12-octadecadienoic (21.91-38.68%), and 9-octadecenoic (17.76%) acids. The physical and antibacterial properties of the seed oil are also reported.


Sign in / Sign up

Export Citation Format

Share Document