Ecological substantiation of invariably high concentrations of heavy metals in municipal wastewater sludges

2015 ◽  
Vol 37 (4) ◽  
pp. 206-210 ◽  
Author(s):  
A. M. Marchenko ◽  
G. N. Pshinko ◽  
V. Ya. Demchenko
2002 ◽  
Vol 36 (19) ◽  
pp. 4765-4774 ◽  
Author(s):  
Soon-Oh Kim ◽  
Seung-Hyeon Moon ◽  
Kyoung-Woong Kim ◽  
Seong-Taek Yun

2021 ◽  
Vol 11 (14) ◽  
pp. 6592
Author(s):  
Ana Moldovan ◽  
Maria-Alexandra Hoaghia ◽  
Anamaria Iulia Török ◽  
Marius Roman ◽  
Ionut Cornel Mirea ◽  
...  

This study aims to investigate the quality and vulnerability of surface water (Aries River catchment) in order to identify the impact of past mining activities. For this purpose, the pollution and water quality indices, Piper and Durov plots, as well vulnerability modeling maps were used. The obtained results indicate that the water samples were contaminated with As, Fe, Mn, Pb and have relatively high concentrations of SO42−, HCO3−, TDS, Ca, K, Mg and high values for the electrical conductivity. Possible sources of the high content of chemicals could be the natural processes or the inputs of the mine drainage. Generally, according to the pollution indices, which were correlated to high concentrations of heavy metals, especially with Pb, Fe and Mn, the water samples were characterized by heavy metals pollution. The water quality index classified the studied water samples into five different classes of quality, namely: unsuitable for drinking, poor, medium, good and excellent quality. Similarly, medium, high and very high vulnerability classes were observed. The Durov and Piper plots classified the waters into Mg-HCO3− and Ca-Cl− types. The past and present mining activities clearly change the water chemistry and alter the quality of the Aries River, with the water requiring specific treatments before use.


2007 ◽  
Vol 56 (10) ◽  
pp. 37-44 ◽  
Author(s):  
I. Urban ◽  
D. Weichgrebe ◽  
K.-H. Rosenwinkel

The anaerobic treatment of municipal wastewater enables new applications for the reuse of wastewater. The effluent could be used for irrigation as the included nutrients are not affected by the treatment. Much more interesting now are renewable energies and the retrenchment of CO2 emission. With the anaerobic treatment of municipal wastewater, not only can the CO2 emission be reduced but “clean” energy supply can be gained by biogas. Most important for the sustainability of this process is the gathering of methane from the liquid effluent of the reactor, because the negative climate-relevant effect from the degassing methane is much higher than the positive effect from saving CO2 emission. In this study, UASB reactors were used with a flocculent sludge blanket for the biodegradation of the carbon fraction in the wastewater with different temperatures and concentrations. It could be shown that the positive effect is much higher for municipal wastewater with high concentrations in hot climates.


1970 ◽  
Vol 39 (1) ◽  
pp. 61-69 ◽  
Author(s):  
Ashafaque Ahmed ◽  
Mikael Ohlson ◽  
Sirajul Hoque ◽  
Md Golam Moula

Chemical composition of leaves of Sonneratia apetala Buch.-Ham. collected from three islands (chars) representing three hydrological regimes in a segment of the coastal zone of Bangladesh was studied. Their relations to some soil chemical and physical variables have also been investigated. The results showed that concentrations of B, C, Fe, Ga, Li, Mg, Mn, N, Na, P, Zn and Sr in leaves of S. apetala grown in different islands differed significantly. It was also revealed that some heavy metals, viz. Mn, Fe, Al, Sr and Ti showed wide range of concentrations. The leaves from one of the locations in Motherbunia island were characterized by exceptional high concentrations of heavy metals such as Al, As, Cu, Fe, Li, Ni, Pb that may be due to local contamination. Leaves sampled in the most seaward locations of the same island had highest concentrations of Ba, Ca, Cu, Mn and Na. High Mn concentration was found in the leaves of S. apetala of Motherbunia island. Correlations among soil and plant samples were generally very weak and organic matter content of soil did not appear to play a significant role in the nutrient supply of S. apetala. Key words: Coastal zone; tidal inundation; elemental concentration; Sonneratia apetala DOI: 10.3329/bjb.v39i1.5528Bangladesh J. Bot. 39(1): 61-69, 2010 (June)


2018 ◽  
Vol 78 (3) ◽  
pp. 644-654 ◽  
Author(s):  
J. Olsson ◽  
S. Schwede ◽  
E. Nehrenheim ◽  
E. Thorin

Abstract A mix of microalgae and bacteria was cultivated on pre-sedimented municipal wastewater in a continuous operated microalgae-activated sludge process. The excess material from the process was co-digested with primary sludge in mesophilic and thermophilic conditions in semi-continuous mode (5 L digesters). Two reference digesters (5 L digesters) fed with waste-activated sludge (WAS) and primary sludge were operated in parallel. The methane yield was slightly reduced (≈10%) when the microalgal-bacterial substrate was used in place of the WAS in thermophilic conditions, but remained approximately similar in mesophilic conditions. The uptake of heavy metals was higher with the microalgal-bacterial substrate in comparison to the WAS, which resulted in higher levels of heavy metals in the digestates. The addition of microalgal-bacterial substrate enhanced the dewaterability in thermophilic conditions. Finally, excess heat can be recovered in both mesophilic and thermophilic conditions.


2003 ◽  
Vol 48 (8) ◽  
pp. 9-18 ◽  
Author(s):  
C. Fux ◽  
K. Lange ◽  
A. Faessler ◽  
P. Huber ◽  
B. Grueniger ◽  
...  

Separate biological elimination of nitrogen from the digester supernatant of a municipal wastewater treatment plant (WWTP) was investigated in pilot and full-scale plants. Denitrification mainly via nitrite was achieved in a sequencing batch reactor (SBR) and a continuous flow reactor (CSTR or SHARON). Suppression of nitrite oxidation in the SBR was feasible at short aerobic/anaerobic intervals allowing for immediate denitrification of the produced nitrite. Nitrate production could also be stopped by exposing the biomass to anaerobic conditions for 11 days. Temporarily high concentrations (up to 80 gNH3-Nm-3) of free ammonia could not be considered as the major reason for inhibiting nitrite oxidation. In a full-scale SBR plant 90% of the nitrogen load was denitrified in a total hydraulic retention time (HRT) of 1.6 days and with a sludge age between 15 and 20 days. Ethanol and methanol were used for denitrification. The specific average substrate consumption was 2.2 gCODdosedg-1Nremoved with an effective biomass yield of 0.2 gCODbiomassg-1CODdosed. No dosing with base was required. In the SHARON process full nitrogen elimination was achieved only with a total HRT greater than 4 days at 29°C. The overall costs were estimated at €1.4 kg-1Nremoved for the SBR and €1.63 kg-1Nremoved in SHARON mode, respectively. The SHARON process is simple in operation (CSTR) but the tank volume has to be significantly greater than in SBR.


2015 ◽  
Vol 17 (1) ◽  
pp. 148-161

<div> <p>Two greenhouse pot experiments were conducted in Agrinion, Greece. The impact of treated municipal wastewater (TMWW) and sludge (i) on the growth of <em>Lactuca sativa</em> L. var Longifolia (lettuce) and (ii) on the extent of soil pollution with heavy metals was studied. Soil pollution was assessed by calculating the Pollution Load Index (PLI). Both of these experiments were conducted, using a randomized block design in four replications and seven treatments, respectively, as follows: (a) Experiment A: study of the effect of treated municipal wastewater (TMWW): [Control, 20%, 40%, 60%, 80%, 100%, (100%+30 t/ha Sludge)] and (b) Experiment B: Study of the effect of sludge (t/ha): 0, &nbsp;6, 12,&nbsp; 18, 24 , 30, (30+100%TMWW). The sludge affected significantly plant height and fresh and dry matter yield, as well as the dry matter N content of plants, while the TMWW affected significantly the dry matter yield and non-significantly the plant height. The pollution load index (PLI) was non-significant for both treatments (sludge and TMWW). According to PLI calibration scale, the soil was found to be slightly polluted with heavy metals under both treatments.</p> </div> <p>&nbsp;</p>


2016 ◽  
Vol 6 (12) ◽  
pp. 50-60 ◽  
Author(s):  
Aziza A. Saad ◽  
Amany El-Sikaily ◽  
Hany Kassem

Background. When heavy metals accumulate in air, soil, and water, the risk of human exposure increases among industrial workers, as well as in people living near polluted areas. Heavy metals adversely affect a variety of bodily systems such as the cardiovascular, respiratory, endocrine, immune, and reproductive systems. In addition, long-term exposure and accumulation of heavy metals in the body may disturb oxidative stress genes and thus increase the susceptibility to various diseases. Objectives. The aim of this study is to estimate the metallothionein concentration in both mussel samples from Abu Qir Bay, Egypt and the blood of local fishermen as a biomarker of exposure to metal pollution. Methods. Levels of metallothionein and heavy metals were measured in mussels. Blood levels of metallothionein and heavy metals of local fishermen were measured and compared with a control group. The effect of heavy metal exposure on oxidative stress status was investigated through the determination of malondialdehyde (MDA), catalase and glutathione content. Results. The results of this study showed high concentrations of metallothionein in mussels and in fishermen's blood, accompanied by high concentrations of metals such as cadmium (Cd), copper (Cu), lead (Pb), chromium (Cr), and zinc (Zn). At the same time, a significant decrease in glutathione content and catalase enzyme activity was associated with a significant increase in the malondialdehyde concentrations in sera of fishermen. Conclusions. The present study found that the El Maadiya region is polluted with heavy metals, inducing oxidative stress in fishermen in the vicinity. These results reveal the necessity of further environmental monitoring in the study area in order to evaluate other types of pollutants and their effects on human health.


2021 ◽  
Vol 31 (3) ◽  
pp. 265-275
Author(s):  
Ewelina Płuciennik-Koropczuk ◽  
Martyna Myszograj ◽  
Sylwia Myszograj

Abstract The article presents lifestyle as an important factor determining the quantity and quality of municipal wastewater. The characteristic of wastewater in Poland has changed significantly in recent years. The qualitative characteristics of municipal wastewater indicate an increase of organic compounds and in the scope of micro-contaminants identified in them, e.g. nanoparticles, microplastics, pharmaceutical and personal care products or heavy metals. Therefore, the knowledge of parameters such as: BOD5, COD, total N, total P and suspension solids is no longer sufficient for the design and operation of wastewater treatment systems. Comprehensive research in this area is necessary to select those indicators that better describe the characteristics of wastewater.


Sign in / Sign up

Export Citation Format

Share Document