Acute Toxicity Studies of Xerox Reprographic Toners

1994 ◽  
Vol 13 (1) ◽  
pp. 2-20 ◽  
Author(s):  
George H. Y. Lin ◽  
Robert Mermelstein

Typical reprographic toners consist of a thermoplastic polymer or polymers as the major component, a colorant or colorants (carbon black or color pigments), and small quantities of additives such as charge control and/or lubricating/release agents. Another type of toner contains iron oxides and polymers) as the major components. As a complement to the recently published Xerox chronic inhalation studies of toners, we are reporting the acute toxicity studies of some typical Xerox toners. The studies include acute oral toxicity in rats, acute dermal toxicity in rabbits, acute inhalation toxicity in rats, eye irritation in rabbits, skin irritation in rabbits, skin sensitization in guinea pigs, and the repeated-insult patch test in humans. These studies represent our acute toxicity testing using different protocols with various toners carried out during the period 1969–1984. In addition, we recently carried out acute dermal toxicity testing at 5 g/kg with two representative toners, for the purpose of classification of waste toners in the State of California. The test results consistently indicate that all toners were practically nontoxic: oral LD50 from <5 to <35 g/kg; dermal LD50 from <2 to <5 g/kg; and inhalation LC50 (4 h) from <0.17 to <10.2 g/m3. They were nonirritating to the eye and nonirritating/ nonsensitizing to the skin.

2017 ◽  
Vol 19 (3) ◽  
pp. 429-437 ◽  
Author(s):  
Monika Nendza ◽  
Martin Müller ◽  
Andrea Wenzel

Classification of baseline and excess toxicants to replace 50% of fish acute toxicity testing with reliable QSAR predictions.


2020 ◽  
pp. 31-32
Author(s):  
Mikhail A. Levchenko ◽  
◽  
Natalia A. Sennikova ◽  

Toxicological assessment is a mandatory research step in the development of new insecticidal drugs. At the All-Russian Research Institute of Veterinary Entomology and Arachnology, a prototype of the insecticidal bait Mukhnet IF was obtained with an active ingredient content of 0.06% ivermectin and 0.015% fipronil, which showed a highly effective effect against houseflies. This work presents the results of the study of acute oral toxicity of the above agent. For this, male white mice with a live weight of 16-26 g were selected. They were kept on a starvation diet for one day in individual houses with water. The drug was given in mg/kg body weight the next day. A total of 33 doses have been tested, ranging from 100 mg/kg to 40,000 mg/kg. The animals were observed for 14 days. According to the research results, it was revealed that at doses up to 20,000 mg/kg there were no signs of intoxication, but when tested at 25,000 mg/kg in some mice, these signs were noted, and at 30,000, 35,000 and 40,000 mg/kg deaths were recorded 20±10, 45±30 and 60±20%, respectively. It was not possible to test the drug over the last above dose due to incomplete eaten by mice. According to the degree of danger for warm-blooded animals, the drug belongs to the 4th class of low-hazard drugs (average lethal dose of 5000 mg/kg or more) in accordance with the classification of GOST 12.1.007-76. When analyzing the literature data on the toxicological characteristics of preparations containing ivermectin and chlorfenapyr, it was revealed that the insecticidal agent in its acute toxicity for warm-blooded animals is comparable to known analogues.


Author(s):  
Meenakshi Sundaram Malayappan ◽  
Gayathri Natarajan ◽  
Logamanian Mockaiyathevar ◽  
Meenakumari Ramasamy

Abstract Objectives Madhulai Manappagu – a well-known sastric and widely prescribed Siddha herbal syrup formulation indicated for treating Veluppu Noi (Anaemia especially Iron deficiency Anaemia) has been in day today practice in Tamil Nadu for a quite longer decades. The syrup is a herbal preparation which has a sweet pleasant odour and a palatable taste, contain the juice of pomegranate (Punica granatum L.) as the main ingredient. Though the formulation is a fruit juice, the safety profile of the syrup is not established and is being marketed without toxicological evaluation. The study is aimed at ascertaining the acute and sub-acute toxicity assessment of Madhulai Manappagu in Wistar Albino rats. Methods The acute and sub-acute (28day repeated oral) toxicity studies were performed as per the guidelines mentioned in the Organization for Economic Cooperation and Development (OECD) 423 (adopted on December 2001) and TG 407 (adopted on October 2008) with slight modifications respectively. For acute toxicity study, three female rats were randomly selected as control; three female rats were randomly selected and were administered a single dose of 5,000 mg/kg body weight per oral route. For sub-acute (28day repeated oral) toxicity studies, three doses of test drug MM of 500 mg/kg/day (low dose), 750 mg/kg/day (intermittent dose) and 1,000 mg/kg/day (high dose) were selected for administration. Both sexes of Wistar Albino rats were randomized into four groups of 10 animals each (five males, five females). Group I was kept as control group. Group II, III and IV served as low, intermittent and high doses of MM respectively. Animals were observed for mortality, morbidity, body weight changes, feed and water intake. Haematology, clinical biochemistry, electrolytes, gross pathology, relative organ weight and histopathological examination were performed. Results In the acute toxicity study, rats showed no toxicological signs on behavior, gross pathology and body weight of rats when treated with a single dose of 5,000 mg/kg body weight per oral route. In the subacute (28 days repeated oral) toxicity study, rats have showed no significant changes on behavior, gross pathology, body weight, and hematological and biochemical parameters when treated with Madhulai Manappagu in three different doses. Conclusions The toxicity studies which include both acute and 28 days repeated (subacute) oral toxicity studies, revealed no observed adverse effect level (NOAEL) of Madhulai Manappagu in animals. Thus the safety of the drug in human usage was ensured.


2018 ◽  
Vol 12 (26) ◽  
pp. 389-396 ◽  
Author(s):  
Mengiste Berhan ◽  
Dires Kassahun ◽  
Lulekal Ermias ◽  
Arayaselassie Mahlet ◽  
Zenebe Tizazu ◽  
...  

1988 ◽  
Vol 7 (6) ◽  
pp. 721-739 ◽  

Glyceryl Ricinoleate is the monoester of glycerol and ricinoleic acid. Castor oil contains 87–90% Glycerol Ricinoleate. Ricinoleic acid is metabolized by both β-oxidation and α-oxidation. Acute oral toxicity tests in mice indicated that Glyceryl Ricinoleate has an LD50 greater than 25.0 ml/kg and is, at most, mildly irritating to unrinsed rabbit eyes. This ingredient was not a primary skin irritant. Castor oil was nonmutagenic by the Ames test. Ricinoleic acid was not a carcinogen when tested in mice. In human single-insult occlusive patch tests, no indication of skin irritation potential was observed in the two products containing 5.6% Glyceryl Ricinoleate. The available data on Glyceryl Ricinoleate were insufficient to determine whether this ingredient, under each relevant condition of use, was either safe or not safe. The types of data required before a decision can be made include: (1) 28 day chronic dermal toxicity in guinea pigs, and (2) clinical sensitization and photosensitization studies (or an appropriate ultraviolet spectrum instead of the photosensitization data).


Scientifica ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-6 ◽  
Author(s):  
Jobi Xavier ◽  
Kshetrimayum Kripasana

The present study was focused on the concentration-dependent changes in oral acute toxicity of leaf extracts of E. fluctuans in zebrafish. The study was also aimed at the details of histopathological changes in the gill, liver, brain, and intestine of zebrafish exposed to the leaf extracts of the plant E. fluctuans. Enydra fluctuans Lour is an edible semiaquatic herbaceous plant used widely for the alleviation of the different diseases. Since there were no toxicity studies conducted on this plant, the present study was an attempt to look into the elements of toxicity of the plants. Two types of experiments are conducted in the present study. First, the acute oral toxicity study was conducted as per the OECD guidelines 203. Second, histopathological changes were observed in the fishes exposed to the lethal concentrations of plant extract. The oral acute toxicity studies conducted on Zebrafish have revealed that the leave extracts of E. fluctuans were toxic to the tested fish at the concentration of 200 mg/kg body weight. The histopathological studies conducted on the intestine of treated fishes showed that treatment has induced rupturing of the villi structure and fusion of villi the membrane and detachment of the villi structure from the basal membrane of the intestine. The histology of the liver also showed severe vacuolization in the cells while it is not affected in control. The studies on gills showed the detachment of the basal epithelial membrane in the gills compared to control which might have led to death of the fish. The histopathological observations of brain tissues treated with test samples also revealed the marked impingement in the brain parenchyma while the control is normal without impingement of the brain.


Author(s):  
PANDU SALIM HANAFI ◽  
AJI SUTRISNO ◽  
TUTIK MURNIASIH ◽  
HARIJONO ◽  
MASTERIA YUNOVILSA PUTRA ◽  
...  

Objective: This study aimed to evaluate the toxicological potential of the ethanol extract of Holothuria atra through the acute oral toxicity – acute toxic class method. Methods: The sample was immersed in ethanol for 72 h at room temperature and repeated 3 times. The extracts were evaporated using a vacuum rotary evaporator. The identification of compounds in the ethanol extract of H. atra was carried out using liquid chromatography–mass spectrometry (LCMS) analysis. The acute toxicity test was examined the effects of treating male mice with the ethanol extract of H. atra at 300 and 2000 mg/kg by oral administration for 14 days. On the past day of the toxicity test, liver of all experimental animals was taken for histopathological testing. Results: LCMS analysis showed that the ethanol extract of H. atra is contained polar compounds (chlorogenic acid, coumaric acid, a glycosaminoglycan, and holothurin) and non-polar compounds (fatty acids). Acute toxicity study was performed at a dose of 300 and 2000 mg/kg for 14 consecutive days. No deaths or behavioral changes were observed during the administration of both doses. Histopathological test results on the liver showed a few changes at doses of 2000 mg/kg. Conclusions: The LD50 is equal to 5000 mg/kg and the ethanol extracts of H. atra can be classified as practically nontoxic. However, further studies are required to proceed to clinical studies in humans.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Qi Zeng ◽  
Hui Xie ◽  
Hongjin Song ◽  
Fayu Nie ◽  
Jiahua Wang ◽  
...  

Abrus cantoniensis (Leguminosae sp.) is a traditionally used remedy for treating rheumatism, blood stasis, and internal injuries. In order to reveal a new insight of the utilization of the plant, solvent extraction by ethyl acetate (EA) was performed in order to evaluate the plant extracts’ in vivo excision and incision-wound potentials with models. The contents of the EA fraction, wound healing activity, acute oral toxicity, and acute dermal toxicity were studied. As a result, the main chemical constituents of the EA fraction were alkaloids, flavonoids, and steroids. The acute oral toxicity test results and assessment of skin hypoallergenicity showed that the plant extract was safe at LD50 as high as 5000 mg/kg. Both excision and incision model tests results indicated that the EA fraction of A. cantoniensis showed a significant wound healing capacity at a concentration of 5% (v/w) (p<0.01) as observed by the increased wound contraction, decreased epithelialization time, and increased hydroxyproline content compared to the ones of the controls. The present study showed that the EA fraction of A. cantoniensis possesses potential wound healing activities and provided recent results for the use of A. cantoniensis for wound curing.


1983 ◽  
Vol 2 (7) ◽  
pp. 35-60 ◽  

Nonoxynols are chemically stable ethoxylated alkylphenols which are chemically foaming and solubilizing agents. Estimates of the acute oral LD50s of nine of the Nonoxynols (-2 to 15) range from 0.62 to 7.4 g/kg in several animal species. Acute dermal toxicity studies in rabbits produced an LD50 range of 1.8 ml/kg to 4.4 g/kg. Skin irritation tests on rabbits indicated that Nonoxynols are nonirritating to moderately irritating. Nonoxynol compounds with short ethoxylated chains are generally severe ocular irritants, whereas long-chained Nonoxynols are only slightly irritating to the rabbit eye. No evidence of carcinogenicity was observed when Nonoxynol-4 and 9 were fed to both dogs and rats. A mutagenicity study of these two compounds by the Ames test was negative. Undiluted Nonoxynol-4 and 9 were nonirritating and nonsensitizing in clinical studies. A 50% solution of Nonoxynol-15 and/or Nonoxynol-50 produced no irritation or sensitization when tested on 168 subjects, nor was there evidence of phototoxicity when tested on a subset of this population. It is concluded that Nonoxynols 2, 4, 8, 9, 10, 12, 14, 15, 30, 40, and 50 are safe as cosmetic ingredients.


2006 ◽  
Vol 25 (1_suppl) ◽  
pp. 29-127 ◽  

Sodium p -Chloro- m -Cresol, p -Chloro- m -Cresol (PCMC), Mixed Cresols, m -Cresol, o -Cresol, p -Cresol, Isopropyl Cresols, Thymol, Chlorothymol, o -Cymen-5-ol, and Carvacrol are substituted phenols used as cosmetic biocides/preservatives and/or fragrance ingredients. Only PCMC, Thymol, and o -Cymen-5-ol are reported to be in current use, with the highest concentration of use at 0.5% for o -Cymen-5-ol in perfumes. The use of PCMC in cosmetics is restricted in Europe and Japan. Cresols can be absorbed through skin, the respiratory tract, and the digestive tract; metabolized by the liver; and excreted by the kidney as glucuronide and sulfate metabolites. Several of these cresols increase the dermal penetration of other agents, including azidothymidine. In acute oral toxicity studies, LD50 values were in the 200 to 5000 mg/kg day-1 range across several species. In short-term studies in rats and mice, an o -Cresol, m -Cresol, p -Cresol or m -Cresol/ p -Cresol mixture at 30,000 ppm in the diet produced increases in liver and kidney weights, deficits in liver function, bone marrow hypocellularity, irritation to the gastrointestinal tract and nasal epithelia, and atrophy of female reproductive organs. The no observed effect levels (NOEL) of o -Cresol was 240 mg/kg in mink and 778 mg/kg in ferrets in short-term feeding studies, with no significant dose-related toxicity (excluding body weight parameters). In mice, 0.5% p -Cresol, but neither m -Cresol nor o -Cresol, caused loss of pigmentation. Short-term and subchronic oral toxicity tests performed with various cresols using mice, rats, hamsters, and rabbits resulted in no observed adverse effect levels (NOAELs) for mice of 625 ppm and rats of 50 mg/kg day -1, although the NOEL was 2000 ppm ina chronic study using rats. In rabbits, 160 mg/kg PCMC was found to produce irritation and erythema, but no systemic effects. Hamsters dosed with 1.5% p -Cresol in diet for 20 weeks had a greater incidence of mild and moderate forestomach hyperplasia as compared to the control. Acute inhalation toxicity studies using rats yielded LC50 values ranging from > 20 mg/m3 for o -Cresol to > 583 mg/m3 for PCMC. No deaths were recorded in mice given o -Cresol at 50 mg/m3. Cats exposed (short-term) to 9 to 50 mg/m3 of o -Cresol developed inflammation and irritation of the upper respiratory tract, pulmonary edema, and hemorrhage and perivascular sclerosis in the lungs. Rats exposed (subchronic) to o -Cresol at 9 mg/m3 had changes in leukocytes, spinal cord smears, nervous activity, liver function, blood effects, clinical signs, and neurological effects. In guinea pigs, exposure to 9 mg/m3 produced changes in hemoglobin concentrations and electrocardiograms (EKGs). Rats exposed (subchronic) to 0.05 mg/m3 Mixed Cresols by inhalation exhibited central nervous system (CNS) excitation, denaturation of lung protein, and decreased weight gain. All cresols appear to be ocular irritants. Numerous sensitization studies have been reported and most positive reactions were seen with higher concentrations of Cresol ingredients. Developmental toxicity is seen in studies of m -Cresol, o -Cresol, and p -Cresol, but only at maternally toxic levels. In a reproductive toxicity study of a mixture of m -Cresol and p -Cresol using mice under a continuous breeding protocol, 1.0% caused minimal adult reproductive and significant postnatal toxicity in the presence of systemic maternal toxicity. The o -Cresol NOAEL was 0.2% for both reproductive and general toxicity in both generations. Cresol ingredients were generally nongenotoxic in bacterial, fruit fly, and mammalian cell assays. Thymol did not induce primary lung tumors in mice. No skin tumors were found in mice exposed dermally to m -Cresol, o -Cresol, or p -Cresol for 12 weeks. In the tryphan blue exclusion assay, antitumor effects were observed for Thymol and Carvacrol. Clinical patch testing with 2% PCMC may produce irritant reactions, particularly in people with multiple patch test reactions, that are misinterpreted as allergic responses. o -Cresol, p -Cresol, Thymol, Carvacrol, and o -Cymen-5-ol caused no dermal irritation at or above use concentrations. In two predictive patch tests, PCMC did not produce a sensitization reaction. Overall, these ingredients are not significant sensitizing or photosensitizing agents. The Cosmetic Ingredient Review (CIR) Expert Panel noted some of these ingredients may increase the penetration of other cosmetic ingredients and advised cosmetic formulators to take this into consideration. The CIR Expert Panel concluded that the toxic effects of these ingredients are observed at doses higher than would be available from cosmetics. A concentration limitation of 0.5% was chosen to ensure the absence of a chemical leukoderma effect. For p -Cresol and Mixed Cresols (which contain p -Cresol), the Panel considered that the available data are insufficient to support the safety of these two ingredients in cosmetics. Studies that would demonstrate no chemical leukoderma at concentrations of use of p -Cresol and Mixed Cresols, or would demonstrate a dose response from which a safe concentration could be derived, are needed.


Sign in / Sign up

Export Citation Format

Share Document