scholarly journals Properties and genesis of soils in the Balagansk forest-steppe of Central Siberia and their ecological and resource potential

2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Natalia A. Martynova ◽  
Victoria Yu. Vlasova

The aim of the study. To study the properties and genesis of natural soils of forest-steppe areas of Balagansk steppe. Location and time. The environs of Balagansk settlement in the Balagansky district of Irkutsk region, 2013-2018. Methodology. Combined field and laboratory studies of soil cover and soil properties using soil-morphological, pedo-lithological, climatostratigraphic, botanical, geological-geomorphological and comparative geographical methods, as well as various physical and chemical analyses. Main results. The study of soil properties of the Balagansk’ forest-steppe and assessment of their classification position revealed the basic regularities of geographical distribution of soils. In steppe areas of the studied region clay-illuvial and textural-carbonate chernozems were formed. The forest vegetation favoured the developed of residual-carbonate gray, dark gray, gray and dark gray metamorphic and burozemic soils; the floodplain areas are predominantly occupied by gley soils and dark-humus gleic soils. Conclusion. The study of soil and vegetation cover of the Balagansk’ forest-steppe showed that soils were developed on the eluvium-deluvium of carbonate Cambrian red-colored siltstones and loess cover and have sufficiently high natural fertility and ecological and resource potential. The soils of the investigated area are characterized by a large variety and complex polygenetic structure of the soil profile, which reflects the change of soil formation’ conditions during Holocene-Pleistocene.

2015 ◽  
Vol 16 (1-2) ◽  
pp. 11-25
Author(s):  
V. V. Medvedev

The continuality is considered as the fundamental feature of a soil cover consisting gradual change of its properties in space, synchronized with changes of soil factors formation, and dyscretivity is mainly artificial the introduced category caused by classification appreciably various genetic and agritechnologic divisions. The soil cover is studied basically as continual and is very weak as a discrete body, especially if it to consider at an original average hierarchical level (mean spatial heterogeneity of many soil properties within the limits of polypedon, or, in a context of present article, – fields of a crop rotation). Certainly, it brakes successful development of representations about a soil horizontal structure and, as consequence, practical appendices of heterogeneity to precise agriculture. Zonal systems of agriculture are based on an environment of a zone and in essence reflect average continual features of a soil cover. Precise systems are under construction on the basis of dyscretivity of a soil cover – new soil borders which are used for allocation of soil contours within the limits of a field for differentiation of ways and intensity of tillage, dozes of  fertilizers application and chemical ameliorants. In article attempt to use the established representations about spatial features of soil properties for improvement of modern practice of agriculture, especially precise agriculture, including ways of a finding of the area of contours of a field with different parameters of fertility are made. As objects 6 fields are used, three from which are located to Polesye, two – in Forest-Steppe and one – in Steppe. Use of principles of precise agriculture and inspection of display soil properties of fields on a regular grid has allowed to divide fields into contours with three levels of fertility, one of which is characterized by properties optimum or close to them, that allows to refuse (or it is essential to reduce) from application of tillage, fertilizer or chemical ameliorants. Precise agriculture – perspective soil – and energy saving the system reflecting heterogeneity of a field of a crop rotation, should replace traditional zonal systems of agriculture. Thus, on the basis of research of various displays of heterogeneity - continual when properties of soil in space change gradually, synchronously to factors of soil formation, and discrete  when properties of soil  change in the limits of small areas necessity of introduction of new borders for the soil cover, based on horizontal studying of soil properties, – morphological, physical, physic-mechanical and others is proposed. By means of borders the configuration of industrial working sites for the differentiated application of agritechnological operations is proved.


2018 ◽  
Vol 940 (10) ◽  
pp. 54-64 ◽  
Author(s):  
I.A. Belozertseva ◽  
A.A. Sorokovoj

On the basis of long-term researches of soils in the territory of Russia and Mongolia soil and ecological division into districts of the Baikal region is carried out. At division into districts the whole set of an environment of soil formation was considered. On the map of soil and ecological division into districts 13 mountain, mid-mountain, low-mountain taiga, foothill, hollow-valley, forest-steppe and steppe provinces reflecting surface device originality as the ratio of balance of heat and moisture forming a basis to zoning is shown against the background of difficult orography are allocated. In total 42 districts on lithologic-geomorphological features are allocated. In formation of distinctions of a soil cover of these provinces the leading role is played by bioclimatic factors and inside them the lithologic-geomorphological ones. In the view of structural approach of the district they are considered as territories with a certain natural change of several types of the soil cover structure caused by features of a relief and the parent rock. The map is made in the MapInfo program. It is revealed that on ill-defined width zoning of soils the vertical one which has a greater influence on soils of this region is imposed. Soils of the Baikal region are not similar to the soils located at the same latitude of the flat European territory of Russia. Zone soils of this territory are specific and original.


2021 ◽  
Vol 16 (1) ◽  
pp. 199-210
Author(s):  
Máté Karlik ◽  
◽  
Ildikó GYOLLAI ◽  
Anna VANCSIK ◽  
Krisztián FINTOR ◽  
...  

The catchment (bedrock and soil) and sediments of lake Bolătău, Romania were studied by high resolution multi-methodological investigations to characterize paleoenvironmental and formation conditions. Particle size analyses, optical and cathodoluminescence microscopy, FTIR-ATR and Raman spectroscopy, X-ray powder diffraction, and XRF were applied for microtextural, chemical, micro-mineralogical and embedded organic material characterization and distribution of the sediments, especially concerning geochemical conditions, like pH and redox potential change. Our results support physical and chemical weathering in the process of soil formation with appearance of the new minerals appear (10Å sized phyllosilicates and clay minerals). Comparison of these studies offer possible differentiation of syn- and diagenetic mineralization, the clarification of debris contribution, microbial mediation and complex mineralization via decomposition of cell and extracellular polymeric substance. Based on the analyses on the abrasives, a suboxic environment prevailed in the depositional area and considerable microbial contribution is proposed via accumulation of lake sediments.


Author(s):  
V. O. Ushkarenko ◽  
K. V. Dudchenko

Relevance of research. The most common irrigation regime for rise in the world is constant flooding. Soils of rice crop rotation undergo significant changes during the construction of rice irrigation systems, and during their operation. This leads to the formation of so-called "rice soils" that is the result of the transformation of full-profile soils, which were partially or completely disturbed when planning and building rice checks. Keeping the water layer in the field for 4-5 months leads to irreversible changes in the morphological, physical and chemical soil properties. Therefore, it is relevant to determine the indicators of the soil cover, taking into account the features of the soils of rice crop rotations, in order to prevent the development of degradation processes and increase the productivity of rice crop rotation. The purpose of the study is to determine the main indicators of soil cover of rice crop rotation and their testing on a rice irrigation system with an area of ​​190 hectares. Methods and methods of research. During the study the following methods were used: field method - to study the basic soil properties; laboratory one - to study of physical and chemical, ameliorative, agrochemical soil properties and chemical composition of irrigation, subsoil, drainage and waste water; mathematical and statistical, comparative and retrospective - to evaluate the study results of the basic soil fertility indices. The research was carried out in the area of a rice irrigation system with 8-field crop rotation, where the proportion of rice does not exceed 50%. Rice was grown in accordance with the technology of rice growing, taking into account environmental protection requirements. For the companion crops, commonly used cultivation technologies were used. The system has been operated in a project mode for 50 years. The soil cover of the investigated system is represented by dark chestnut alkalized (72.9 hectares), meadow solonetz(18.9 hectares) and meadow chestnut alkalized (75.8 hectare) soil types. Research results. On the basis of analysis of retrospective data of monitoring study of  the main indicators of agro-amelioration status of soils under rice crop rotation, the indicators of soil condition for the main soil types of rice irrigation systems were determined: groundwater level, groundwater mineralization, content of light-soluble salts in arable layer, chlorine ions content in soil-water extract, toxic salt content, soil salt balance, humus content, the content of easily hydrolyzed nitrogen compounds, the density of upper humus layer, the content of air-dry aggregates, content of water-stable aggregates. Conclusions. The approbation of the developed soil condition indicators on the rice irrigation system of the Rice Institute of the National Academy of Agrarian Sciences was carried out, which enabled to identify the main problems and specify the ways to overcome them. In the areas with meadow chestnut alkalized and meadow solonetzsoil types, it is necessary to increase their drainage capacity, namely to repair drainage networks. In the whole area of the investigated rice irrigation system, it is necessary to increase the proportion of perennial legumes and fallow land in the crop rotation, to do soil slitting or other types of mechanical soil treatments to improve its structural and aggregate composition, in particular, the content of air-dry soil aggregates in size of 0.25-10,00 mm and water-stable soil aggregates larger than 25 mm.


2017 ◽  
Vol 921 (3) ◽  
pp. 36-42
Author(s):  
D.N. Lopatina

The soil cover of Osa river basin is described in the article, its variety caused by features of a geological structure, relief, climate, vegetation and anthropogenous impact is revealed. Set of factors of soil formation which gives prerequisites for forming of special types of the soils which aren’t fitting into traditional representations of zone types of a taiga and forest zone – chernozems, dark-humic and other soils under steppe vegetation is studied. In total three trunks, nine departments, 27 types and 46 subtypes of soils are allocated. It is established that the main area (more than 7 0 %) is provided by the soils entering into departments of the accumulative and humic, organo-accumulative and textural differentiated soils, agrozyom, and the insignificant territories are busy with full-height types of soils of structural and metamorphic department, litozyom, abrazyom, alluvial. 37,3 % of the general territory of a research occupy agricultural holdings, from them about 12,8 % are used now, 87,2 % are in abandon condition. The map «Soils of Osa River Basin» is provided in the article.


Author(s):  
N. A. Sokolova ◽  
◽  
E. N. Smolentseva ◽  

Plowing up is a widespread type of anthropogenic transformation of soils and soil cover (SC) in the forest-steppe zone of Western Siberia. As a result of plowing up agrogenic transformation (agrotransformation) of soils causes their form and properties change, as well as the spatial characteristics of the SC. In the example of a model territory the features of changes in the component composition and structure of the SC of the Pre-Salair drained plain under the influence of arable press are studied. Automorphic soil formation prevails in the studied area, and zonal natural soils here are chernozems (clay-illuvial and migrate-micellar) and dark grays. These soils have an upper dark humus horizon, which in arable soils becomes an agro-dark humus horizon. In the studied area, an increase in number of the SC components was found due to the soils of the agrozems section and different types of agricultural soils, which leads to a diversification of the component composition. It was found that the component composition of SC shows high degree of its agrotransformation: area of arable soils is 55.6% of total area of SC. We also showed the sequence of agrotransformation for the chernozems of the model territory: chernozems, agrochernozems, agrozems, abraded agrozems, agroabrazems. Agrozems occupy a large area and have a classification diversity. Factors affecting the diversity of agrozems at the type and subtype classification level are identified: the degree of agrogenic transformation of clay-illuvial and migrate-micellar chernozems are distinguished. The low thickness of the humus horizon of soils in the pre-agrarian period during plowing leads to various degrees of their agrotransformation and classification divergence of soils. The SC structure is characterized by geometric parameters in accordance with the concept of V.M. Friedland. These are areas and dissection coefficients (minimum, maximum, average and median) of elementary soil areal (ESA) and soil combinations areal (SCA). Geometries of ESA and SCA are caused by the combined influence of terrain features and anthropogenic impact. ESA of agrotransformed soils (agrograys, agrochernozems, agrozems) have largest sizes, besides undisturbed automorphic soils; ESA of strongly transformed soils developed in temporary flow hollows have smallest sizes. The overall result of the agrogenic transformation of the SC on the studied area is a new spatial agrogenic structure. In the component composition of SC specific soils of different taxonomic levels appear.


Geosciences ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 402 ◽  
Author(s):  
Denis Gavrilov ◽  
Sergey Loiko ◽  
Nina Klimova

Dark, coniferous hemiboreal forests in the south of West Siberia are located in the Holocene forest-steppe ecotone, where natural environmental conditions have been quite dynamic. This dynamic environment resulted in the contrasting evolution of regional soil cover and the development of unique soil profiles with the second humus horizon. The second humus horizon is assumed to be a relic from the dark-humus soil formation stage in the mid-Holocene. This article draws conclusions about changes in regional environmental conditions by analysing data from a geochemically interrelated coevolutionary soil series, obtained by using a combination of conventional soil studies, phytolith analyses, and accelerator mass spectrometry (AMS) dating of phytolith-occluded carbon (PhytOC) and humic acids. The results showed that, in general, phytocenoses changed from mire-meadow vegetation towards forest vegetation via the meadow stage. However, these stages had different durations, depending on the soil catenary position. The topographical divergence of soil phytolith profiles reflects the relief effect on the development of specific soil type combinations, accounting for the major elements of the regional mid-Holocene soil cover. The leading elementary soil-forming processes were humus accumulation and hydrogenic accumulation of calcium carbonates. In the hilltop site of Endocalcic Stagnic Albic Luvisols, the evolutionary changes were shown by the shift from the meadow phytocenosis (Calcic Stagnic Chernozem) to the forest phytocenosis. In the midslope site, the environment was more humid from the start, favouring a phytocenosis with features of the meadow-mire type. The shift from the meadow-mire environment (with Spodic Chernic Gleysols) to the forest type environment with leading profile-forming processes, acid hydrolysis and lessivage, was gradual, occurring via the meadow stage with Calcic Stagnic Chernozem. In the toeslope site (Calcic Stagnic Greyzemic Epidystric Umbrisols), the meadow-mire stage (with Spodic Chernic Gleysols) was succeeded by the forest stage of soil formation. The AMS-dating of PhytOC estimated that the dark-humus stage of soil formation began 6.5–5.7 years calBC. Despite the observed slight translocation of phytoliths down soil profiles and phytolith solubilisation, phytolith analysis can be used to reconstruct shifts in the soil formation environment for surface Holocene palaeosols.


2015 ◽  
Vol 2 (3) ◽  
pp. 61-77
Author(s):  
O. Demydenko ◽  
V. Velychko

The contemporary condition of soil cover in Ukraine is characterized. The attention is focused onto widespread degradation processes in soils. The causes that determine the development of these negative processes are considered. The contemporary informational support for the condition of soil cover in Ukraine is estimated. In general, the current available information is of narrow-departmental nature, obtained by different methods and non-correlated monitoring programs. As a rule, it is stored in under-structured databases, incompatible with other information systems; mainly recorded on paper media unusable with modern technologies, whereby such information resources are diffi cult to be compiled together. These disadvantages are strong constraints against consistent usage of materials for evaluation, forecast and management of changes in the soil cover. The Soil Observation program should thereby be combined with Agrochemical Passportization and ecology-ameliora- tive monitoring; in other words, the application of innovative soil-agrochemical methodology is considered. Each individual type of surveys shall complement the others, and taken altogether, they shall constitute a con- sistent Information System, capable of solving the problems of assessing the condition, forecasting, manage- ment, usage and protection of soil resources. The monitoring procedures should be conducted on the basis of a new soil concept in line with unifi ed programs and methods, so as to meet European approaches to the maxi- mum extent. Such a technical composition enables getting information on present-day processes in soils, and is the only combination that actually helps us to “ecologize” our knowledge of soils, which is the leading trend in the scope of global soil-science. Thus obtained results will serve as a State-owned tool which would subse- quently facilitate the use and protection of soil resources all over the country, to be involved in a united global soil-information scope. The attention is focused onto social signifi cance of the information on soils and their fertility in terms of land resources optimization, as well as the formation of sustainable land use in Ukraine. Aim. To demonstrate the long-term effect of different ways of tillage of typical low-humus chernozem on the change in humus content and composition and the direction of transformation processes of organic fertili- zers. To study the changes in the structure of energy reserves in group and fractional composition of humus in typical low-humus light-loamy chernozem of the Forest-Steppe of Ukraine. Methods. Field, laboratory, microbiological, computational, mathematical and statistical. Results. It was determined that in conditions of long-term subsurface tillage the most effi cient humus accumulation occurs in the 0–20 cm layer of chernozem with simultaneous increase in its content in the lower part of the processed layer without any accumulation differentiation. Surface tillage leads to expressed differentiation in humus accumulation in the 0–20 cm layer of soil (0.005 % per year). When 6 t/ha of humus are replaced by 7 t/ha of by-products the intensity of humus accumulation is decreasing regardless of the way of tillage, but humus accumulation was found to be the most effi cient for subsurface tillage. The application of subsurface tillage leads to the increase in the ratio of C HA : C FA , which is conditioned by the increase in the humifi cation of plant remains of by-products in the 0−20 cm layer of soil by 110–112 % – for subsurface tillage, and by 105 % – for surface tillage. Conclusions. It was established that systematic subsurface tillage of typical chernozem of the Left-Bank Forest-Steppe of Ukraine leads to the structuring both of the total reserves of energy С org , and its quality content, aimed at the increase in the intensity of the processes of humifi cation and accumulation of organic carbon, and the decrease in miner- alization. The ratio of energy reserves С org of humic acids to fulvic acids in the 0−30 cm layer of chernozem is 1.85−1.87 regardless of the way of tillage, which testifi es to the repeatability of humus accumulation, but the total reserves of energy С org was higher for subsurface tillage (+ 31 Teracalorie/ha) compared to deep plough- ing. As for the surface tillage, the energy enrichment was at the level of deep ploughing.


Introduction of complex mineral fertilizer of an azofoska in combination with ammonium nitrate and urea to early ripe potatoes of Zhukovsky and Red Scarlett variety on the planned productivity of 40 t/hectare has allowed to achieve a goal. At the same time in control option without fertilizers the productivity was 23,2-24,8 t/hectare. Use of encapsulated urea has led to decrease in productivity and level of profitability by 26,3-30,9%. Early ripe potatoes of Zhukovsky and Red Scarlett variety on natural fertility of the chernozem leached in the northern forest-steppe of the Tyumen region have created average yield of 23,2-24,8 t/hectare for years of researches. Use of complex mineral fertilizer of an azofoska in combination with ammonium nitrate and urea on the planned productivity of 40 t/hectare has led to increase in productivity on the first variety to 39,5 on the second variety up to 41,4 t/hectare. Introduction of the encapsulated urea has led to decrease in productivity of the early ripe potato tubers studied. At the same time, the peel was gentle and when cleaning it was strongly injured. As to the content of starch (11,9-12,6%) at both varieties the big difference between ex-perience options isn't revealed. The similar picture was observed also according to tastes of tubers. It has made 3,2-3,5 points at Zhukovsky variety and 3,4-3,7 points at Red Scarlett's variety. Profitability level in con-trol option at Zhukovsky variety was 157,3%, at Red Scarlett's variety – 140,5%. In options with non-encapsulated ammonium nitrate and urea the first variety got 172,6-184,1%, second variety – 190,4-207,2%. In option with encapsulated urea at varieties under study the profitability level has decreased 26,3-30,9.


2020 ◽  
Vol 71 (1) ◽  
pp. 192-200
Author(s):  
Anca-Luiza Stanila ◽  
Catalin Cristian Simota ◽  
Mihail Dumitru

Highlighting the sandy soil of Oltenia Plain calls for a better knowledge of their variability their correlation with major natural factors from each physical geography. Pedogenetic processes specific sandy soils are strongly influenced by nature parent material. This leads, on the one hand, climate aridity of the soil due to strong heating and accumulation of small water reserves, consequences emphasizing the moisture deficit in the development of the vegetation and favoring weak deflation, and on the other hand, an increase in mineralization organic matter. Relief under wind characteristic sandy land, soil formation and distribution has some particularly of flat land with the land formed on the loess. The dune ridges are less evolved soils, profile underdeveloped and poorly supplied with nutrients compared to those on the slopes of the dunes and the interdune, whose physical and chemical properties are more favorable to plant growth.Both Romanati Plain and the Blahnita (Mehedinti) Plain and Bailesti Plain, sand wind shaped covering a finer material, loamy sand and even loess (containing up to 26% clay), also rippled with negative effects in terms of overall drainage. Depending on the pedogenetic physical and geographical factors that have contributed to soil cover, in the researched were identified following classes of soils: protisols, cernisols, cambisols, luvisols, hidrisols and antrosols.Obtaining appropriate agricultural production requires some land improvement works (especially fitting for irrigation) and agropedoameliorative works. Particular attention should be paid to preventing and combating wind erosion.


Sign in / Sign up

Export Citation Format

Share Document