scholarly journals Analisis Asam Lemak Omega-3 dari Minyak Kepala Ikan Sunglir (Elagatis bipinnulata) melalui Esterifikasi Enzimatik

2015 ◽  
Vol 15 (2) ◽  
pp. 75 ◽  
Author(s):  
Sri Seno Handayani ◽  
Erin Ryantin Gunawan ◽  
Lely Kurniawati ◽  
Murniati Murniati ◽  
Lalu Haris Budiarto

Omega-3 fatty acid is the essential fatty acid and important for human health. Omega-3 fatty acid is also really neededby pregnant and lactating mothers and also children to prevent the malnutrition. Omega-3 fatty acid is also reallyneeded by pregnant and lactating mothers, and children to prevent the malnutrition. The omega-3 fatty acid is commonlyfound in some fish like salmon, tuna, hering, and mackarel. However, those fish are expensive, so alternativesources relatively cheaper fish. One of fish that is low in price and high in production in Nusa Tenggara Barat is Sunglir(Elagatis bipinnulata ). The purpose of this research was to determine free fatty acids content, type of omega-3 fattyacids, and their compositions in head fish oil. Head of sunglir fish was used as a sample because the head was usuallynot consumed. Sunglir fish was obtained from the Ampenan beach (NTB) with a size of 20–30 cm. The extraction methodused in this study was soxhletation with n-hexane solvent and analyzed with Gas Chromatografi (GC), acid ethyl estersfrom the esterification enzymatic of fish oil. Result revealed that the fish oil contained 84% free fatty acid and 0.85%linolenic acid (ALA), 2.80% eicosatrienoic acid (ETA), 0.73% eicosapentaenoic acid (EPA) and 2.41% docosahexaenoicacid (DHA). Saponification and iodine number of head fish oil is 248.24 mg KOH/g oil and 227.16 g Iod/100 g oil.

2015 ◽  
Vol 22 (3) ◽  
pp. 153-162 ◽  
Author(s):  
Juçara X. Zaparoli ◽  
Eduardo K. Sugawara ◽  
Altay A.L. de Souza ◽  
Sérgio Tufik ◽  
José Carlos F. Galduróz

Background: High oxidative stress, which is caused by smoking, can alter omega-3 fatty acid concentrations. Since omega-3 fatty acids play a role in dopaminergic neurotransmission related to dependence, it is important to understand their effects on nicotine dependence. Methods: This research comprised 2 studies. The first one consisted of a cross-sectional evaluation, in which the levels of the most important omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), were compared between smokers and non-smokers in a sample of 171 individuals; of them, 120 were smokers and 51 were non-smokers. The other study was a clinical, double-blind, randomized, placebo controlled, in which 63 smokers received daily treatment with capsules of fish oil (a source of omega-3/3 g/day) or mineral oil (used as placebo, also 3 g/day), taken 3 times a day for 90 days. Each fish oil capsules contained approximately 210.99 mg EPA and 129.84 mg of DHA. The outcome was evaluated by means of psychometric and biological measures as well as self-reports of tobacco use. The evaluations were carried out at the beginning of treatment and once a month thereafter (total of 4 times). Outcomes: The omega-3 fatty acid lipid profile showed that smokers present lower concentrations of DHA. After treatment, the omega-3 group showed a significant reduction in their levels of dependence. Interpretation: Smokers showed lower peripheral levels of omega-3, and treatment with the most important omega-3 fatty acids brought about a reduction in nicotine dependence.


mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jhih-Hang Jiang ◽  
Karl A. Hassan ◽  
Stephanie L. Begg ◽  
Thusitha W. T. Rupasinghe ◽  
Varsha Naidu ◽  
...  

ABSTRACT Free fatty acids hold important immune-modulatory roles during infection. However, the host’s long-chain polyunsaturated fatty acids, not commonly found in the membranes of bacterial pathogens, also have significant broad-spectrum antibacterial potential. Of these, the omega-6 fatty acid arachidonic acid (AA) and the omega-3 fatty acid decosahexaenoic acid (DHA) are highly abundant; hence, we investigated their effects on the multidrug-resistant human pathogen Acinetobacter baumannii. Our analyses reveal that AA and DHA incorporate into the A. baumannii bacterial membrane and impact bacterial fitness and membrane integrity, with DHA having a more pronounced effect. Through transcriptional profiling and mutant analyses, we show that the A. baumannii β-oxidation pathway plays a protective role against AA and DHA, by limiting their incorporation into the phospholipids of the bacterial membrane. Furthermore, our study identified a second bacterial membrane protection system mediated by the AdeIJK efflux system, which modulates the lipid content of the membrane via direct efflux of lipids other than AA and DHA, thereby providing a novel function for this major efflux system in A. baumannii. This is the first study to examine the antimicrobial effects of host fatty acids on A. baumannii and highlights the potential of AA and DHA to protect against A. baumannii infections. IMPORTANCE A shift in the Western diet since the industrial revolution has resulted in a dramatic increase in the consumption of omega-6 fatty acids, with a concurrent decrease in the consumption of omega-3 fatty acids. This decrease in omega-3 fatty acid consumption has been associated with significant disease burden, including increased susceptibility to infectious diseases. Here we provide evidence that DHA, an omega-3 fatty acid, has superior antimicrobial effects upon the highly drug-resistant pathogen Acinetobacter baumannii, thereby providing insights into one of the potential health benefits of omega-3 fatty acids. The identification and characterization of two novel bacterial membrane protective mechanisms against host fatty acids provide important insights into A. baumannii adaptation during disease. Furthermore, we describe a novel role for the major multidrug efflux system AdeIJK in A. baumannii membrane maintenance and lipid transport. This core function, beyond drug efflux, increases the appeal of AdeIJK as a therapeutic target.


2015 ◽  
Vol 18 (2) ◽  
Author(s):  
Santiara Putri Pramestia ◽  
Bambang Riyanto ◽  
Wini Trilaksani

<p>Omega-3 fatty acids have important roles in improvement of intelligent and health<br />of human. Microencapsulation of fish oil as source of omega-3 fatty acids is an effort to<br />maintain flavor, aroma, stability, and also to successfully transfer bioactive component<br />from the fish oil as fortification material for foods or medicines. Improvement of instant<br />crab cream soup enriched with fish oil as source of omega-3 fatty acid has never been<br />conducted before. The purpose of this research was to improve microencapsulation<br />method for fish oil as source of omega-3 fatty acids as fortification material for instant<br />cream of crab soup. Microencapsulation methods in this research are homogenization<br />and spray drying. The results showed that the best microcapsule was obtained from<br />homogenization treatment for 10 minutes with efficiency of 90.41±0.64%. The shape of<br />the obtained microcapsule was spherical with average size of 6.52 μm, with induction time<br />up to 26.09±0.01 hours. The best cream of crab soup formula was at fish oil microcapsule </p><p>concentration of 3.30%, with 8.19% daily value of omega-3, inclusion 11.32% of EPA and<br />DHA at serving size of 17.56 gram.<br />Keywords : Crab, fish oil, fortification, instant cream soup, microencapsulation, omega-3<br />fatty acids</p>


2015 ◽  
Vol 82 (1) ◽  
pp. 218-231 ◽  
Author(s):  
Frank E. Dailey ◽  
Joseph E. McGraw ◽  
Brittany J. Jensen ◽  
Sydney S. Bishop ◽  
James P. Lokken ◽  
...  

ABSTRACTApproximately 30 years ago, it was discovered that free-living bacteria isolated from cold ocean depths could produce polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) (20:5n-3) or docosahexaenoic acid (DHA) (22:6n-3), two PUFA essential for human health. Numerous laboratories have also discovered that EPA- and/or DHA-producing bacteria, many of them members of theShewanellagenus, could be isolated from the intestinal tracts of omega-3 fatty acid-rich marine fish. If bacteria contribute omega-3 fatty acids to the host fish in general or if they assist some bacterial species in adaptation to cold, then cold freshwater fish or habitats should also harbor these producers. Thus, we undertook a study to see if these niches also contained omega-3 fatty acid producers. We were successful in isolating and characterizing unique EPA-producing strains ofShewanellafrom three strictly freshwater native fish species, i.e., lake whitefish (Coregonus clupeaformis), lean lake trout (Salvelinus namaycush), and walleye (Sander vitreus), and from two other freshwater nonnative fish, i.e., coho salmon (Oncorhynchus kisutch) and seeforellen brown trout (Salmo trutta). We were also able to isolate four unique free-living strains of EPA-producingShewanellafrom freshwater habitats. Phylogenetic and phenotypic analyses suggest that one producer is clearly a member of theShewanellamorhuaespecies and another is sister to members of the marine PUFA-producingShewanella balticaspecies. However, the remaining isolates have more ambiguous relationships, sharing a common ancestor with non-PUFA-producingShewanella putrefaciensisolates rather than marineS. balticaisolates despite having a phenotype more consistent withS. balticastrains.


2014 ◽  
Vol 4 (1) ◽  
pp. 31-39
Author(s):  
Siwitri Kadarsih

The objective was to get beef that contain unsaturated fatty acids (especially omega 3 and 6), so as to improve intelligence, physical health for those who consume. The study design using CRD with 3 treatments, each treatment used 4 Bali cattle aged approximately 1.5 years. Observations were made 8 weeks. Pasta mixed with ginger provided konsentrat. P1 (control); P2 (6% saponification lemuru fish oil, olive oil 1%; rice bran: 37.30%; corn: 62.70%; KLK: 7%, ginger paste: 100 g); P3 (lemuru fish oil saponification 8%, 2% olive oil; rice bran; 37.30; corn: 62.70%; KLK: 7%, ginger paste: 200 g). Konsentrat given in the morning as much as 1% of the weight of the cattle based on dry matter, while the grass given a minimum of 10% of the weight of livestock observation variables include: fatty acid composition of meat. Data the analyzies qualitative. The results of the study showed that the composition of saturated fatty acids in meat decreased and an increase in unsaturated fatty acids, namely linoleic acid (omega 6) and linolenic acid (omega 3), and deikosapenta deikosaheksa acid.Keywords : 


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1811
Author(s):  
Ella Aitta ◽  
Alexis Marsol-Vall ◽  
Annelie Damerau ◽  
Baoru Yang

Baltic herring (Clupea harengus membras) is one of the most abundant commercially caught fish species from the Baltic Sea. Despite the high content of fat and omega-3 fatty acids, the consumption of Baltic herring has decreased dramatically over the last four decades, mostly due to the small sizes and difficulty in processing. At the same time there is an increasing global demand for fish and fish oil rich in omega-3 fatty acids. This study aimed to investigate enzyme-assisted oil extraction as an environmentally friendly process for valorizing the underutilized fish species and by-products to high quality fish oil for human consumption. Three different commercially available proteolytic enzymes (Alcalase®, Neutrase® and Protamex®) and two treatment times (35 and 70 min) were investigated in the extraction of fish oil from whole fish and by-products from filleting of Baltic herring. The oil quality and stability were studied with peroxide- and p-anisidine value analyses, fatty acid analysis with GC-FID, and volatile compounds with HS-SPME-GC-MS. Overall, longer extraction times led to better oil yields but also increased oxidation of the oil. For whole fish, the highest oil yields were from the 70-min extractions with Neutrase and Protamex. Protamex extraction with 35 min resulted in the best fatty acid composition with the highest content of eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) but also increased oxidation compared to treatment with other enzymes. For by-products, the highest oil yield was obtained from the 70-min extraction with Protamex without significant differences in EPA and DHA contents among the oils extracted with different enzymes. Oxidation was lowest in the oil produced with 35-min treatment using Neutrase and Protamex. This study showed the potential of using proteolytic enzymes in the extraction of crude oil from Baltic herring and its by-products. However, further research is needed to optimize enzymatic processing of Baltic herring and its by-products to improve yield and quality of crude oil.


Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 524 ◽  
Author(s):  
Lu ◽  
Eiriksson ◽  
Thorsteinsdóttir ◽  
Simonsen

Bryophytes (mosses, liverworts and hornworts) often produce high amounts of very long-chain polyunsaturated fatty acids (vl-PUFAs) including arachidonic acid (AA, 20:4 △5,8,11,14) and eicosapentaenoic acid (EPA, 20:5 △5,8,11,14,17). The presence of vl-PUFAs is common for marine organisms such as algae, but rarely found in higher plants. This could indicate that bryophytes did not lose their marine origin completely when they landed into the non-aqueous environment. Vl-PUFA, especially the omega-3 fatty acid EPA, is essential in human diet for its benefits on healthy brain development and inflammation modulation. Recent studies are committed to finding new sources of vl-PUFAs instead of fish and algae oil. In this review, we summarize the fatty acid compositions and contents in the previous studies, as well as the approaches for qualification and quantification. We also conclude different approaches to enhance AA and EPA productions including biotic and abiotic stresses.


Author(s):  
Rukmana Rahayu Lestari ◽  
Ratna Ibrahim ◽  
Putut Har Riyadi

ABSTRAK   Proses pengolahan minyak ikan kasar dengan metode steam jacketed di salah satu perusahaan pengolahan hasil perikanan menggunakan bahan baku campuran limbah padat pengalengan ikan Mackerel dengan suhu yang tinggi 90-100 °C menghasilkan produk yang belum memenuhi persyaratan mutu minyak ikan secara nasional. Penelitian ini bertujuan untuk mengetahui pengaruh perbedaan suhu pengolahan minyak ikan kasar ≤ 85 °C dari kepala ikan Mackerel tanpa insang dengan metode steam jacketed sederhana terhadap mutu produknya serta untuk mengetahui suhu dan lama waktu pengolahan yang menghasilkan minyak ikan kasar yang memenuhi persyaratan mutu secara nasional maupun internasional. Materi penelitian berupa kepala ikan Mackerel tanpa insang. Penelitian dilakukan dengan metode eksperimental laboratoris. Percobaan dirancang dengan Rancangan Percobaan Kelompok dengan perlakuan suhu berbeda (85 °C, 75 °C, dan 65 °C). Masing-masing perlakuan diulang tiga kali. Variabel mutu yang diamati adalah asam lemak bebas, bilangan peroksida, bilangan iod, kadar air, rendemen dan nilai sensori, serta uji profil asam lemak untuk produk yang terbaik. Data dianalisis menggunakan ANOVA dan perbedaan diantara perlakuan diuji dengan Uji Tukey. Hasil penelitian menunjukkan bahwa perbedaan suhu pengolahan minyak ikan kasar dari kepala ikan Mackerel tanpa insang dengan metode steam jacketed sederhana memberikan pengaruh berbeda nyata terhadap nilai asam lemak bebas, bilangan peroksida, bilangan iod, dan rendemen, tetapi tidak menyebabkan perbedaan nyata terhadap nilai sensori. Mutu produk terbaik yaitu produk yang diolah pada suhu 65 °C selama 20 menit, produk tersebut mengandung asam lemak omega-3 dan omega-6.   Kata kunci: Kepala ikan Mackerel, Minyak ikan kasar, Steam jacketed sederhana     ABSTRACT  The process of crude fish oil processing using the steam jacketed method in a fish product processing company which uses the raw material of solid mixed waste of canned Mackerel at 90-100 °C result in the products which have not fulfilled the requirement of national fish oil quality. The purpose of this research is to figure out the effect of processing temperature difference in the processing of crude fish oil below or at 85 °C from gill-less Mackerel fish head using the simple steam jacketed method on the quality of the processing products. This research is also intended to figure out the temperature and duration for the processing which produces the crude fish oil to fulfill both national and international quality standard.The research materials were gill-less Mackerel fish heads. The research was conducted using laboratory experimental method. The experiments were designed into Randomized Block Design with difference temperatures (85 °C, 75 °C, and 65 °C). Each of the temperature treatments was made in triplicate. The quality variables to be observed were free fatty acid value, peroxide value, iodine value, moisture content, yield and sensory value. The quality variables which made the best treatment was then tested using the fatty acid profile test for the best crude fish oil product. The data obtained were analyzed using ANOVA, and the difference among the treatments were tested using HSD test.The research result showed that the temperature difference in crude fish oil processing from gill-less Mackerel fish heads using the simple steam jacketed method gave significantly different effect on free fatty acid value, peroxide value, iodine value, and yield. However, did not give significantly different effect on sensory value. The best product quality was obtained from the product which was processed at 65 °C for 20 minutes, the product contains fatty acid omega-3 and omega-6. Keywords: Crude fish oil, Mackerel fish head, Simple steam jacketed method


2013 ◽  
Vol 91 (11) ◽  
pp. 960-965 ◽  
Author(s):  
Kelby Cleverley ◽  
Xiaozhou Du ◽  
Sheena Premecz ◽  
Khuong Le ◽  
Matthew Zeglinski ◽  
...  

Owing to their spontaneous development of atherosclerosis, apolipoprotein E knockout mice (ApoEKO) are one of the best studied animal models for this disease. Little is known about the utility of various omega-3 fatty acid regimens, in particular fish oils, in preventing cardiac disease in ApoEKO mice. The purpose of this study was to determine the cardiovascular effects of omega-3 fatty acid supplementation with either safflower oil (control), fish oil, flaxseed oil, or designed oil in ApoEKO mice fed a high-fat diet for a total of 16 weeks. In-vivo cardiac function was assessed weekly using murine echocardiography. Blood pressure, plasma lipid levels, and brain natriuretic peptide (BNP) were serially measured. The results show that ApoEKO mice fed fish oil demonstrated an increase in left ventricular wall thickness as a result of increased afterload. Despite chronic treatment with fish oil over 16 weeks, blood pressure increased in ApoEKO mice by 20% compared with the baseline. Both echocardiographic evidence of left ventricular hypertrophy and biochemical increase in BNP levels confirmed diastolic dysfunction in ApoEKO mice fed fish oil. This suggests that high-fat diet supplemented with fish oil may lead to adverse cardiovascular effects in ApoE deficient mice.


Sign in / Sign up

Export Citation Format

Share Document