In-Situ Electrical Monitoring and Contactless Measurement Techniques for Enhanced FIB Modifications
Abstract Recent planar technologies with 3 metal layers or more challenge current physical design modification capacities using Focused Ion Beam tools. Image visibility on the FIB is drastically reduced, making accurate positioning and milling operations in the area of interest more difficult, and the use of power planes increases the risk of short circuits while accessing inferior metal lines. Despite the complexity of FIB modifications, however, the demand for circuit modifications continues to increase. To respond to this demand for successful, time efficient, FIB modifications, step by step monitoring of operations is imperative. In this paper, we will present an innovative method which brings in-situ electrical monitoring and contactless measurement capabilities to FIB systems. Electrical connection of the circuit inside the vacuum FIB chamber is done using a commercial load module and logic waveform acquisition with the FIB is obtained without modifying FIB hardware using a voltage contrast approach. With this method, it is possible to verify the completion of FIB milling and depositing operations by temporarily suspending FIB action so that a test pattern can be run allowing electrical testing and measurements of the circuit without damaging it.