Characterization of Sub 130 Nanometer Gate Length SOI MOSFET Devices Exhibiting Short Channel Effects

Author(s):  
Terence Kane ◽  
Michael P. Tenney ◽  
John Bruley

Abstract As MOSFET device gate lengths shrink below the 130 nanometer node, the effects of short channel effects (SCE) and gate line edge roughness (LER) have an increasingly more pronounced affect on device performance [1-8, 10]. The 2001 International Technology Roadmap for Semiconductors (ITRS) predicts increasingly tighter critical dimensions (CD) control limits on LER from 2.7 nm in 2004 to 1.3 nm in 2010 [9,11]. As gate lengths shrink, resist etch processes emerge as the most significant contributor to LER [1-8, 11]. In addition, another contributing factor to SCE is junction implant defects. Examples of gate LER effects and junction defects in 130 nanometer node SOI SRAM MOSFET devices identified by sub-micron electrical characterization with analysis by high resolution transmission electron microscopy (TEM) are discussed.

2011 ◽  
Vol 1282 ◽  
Author(s):  
David A. J. Moran ◽  
Donald A. MacLaren ◽  
Samuele Porro ◽  
Richard Hill ◽  
Helen McLelland ◽  
...  

ABSTRACTHydrogen terminated diamond field effect transistors (FET) of 50nm gate length have been fabricated, their DC operation characterised and their physical and chemical structure inspected by Transmission Electron Microscopy (TEM) and Electron Energy Loss Spectroscopy (EELS). DC characterisation of devices demonstrated pinch-off of the source-drain current can be maintained by the 50nm gate under low bias conditions. At larger bias, off-state output conductance increases, demonstrating most likely the onset of short-channel effects at this reduced gate length.


Author(s):  
Raju Hajare ◽  
C. Lakshminarayana

Adder is the most important arithmetic block that are used in all processors. Most of the logical circuits till today were designed using Metal Oxide Semiconductor Field Effect Transistors (MOSFET’s). In order to reduce chip area, leakage power and to increase switching speed, MOSFET’s were continuously scaled down. Further scaling below 45nm, MOSFET’s suffers from Short Channel Effects (SCE’s) which leads to degraded performance of the device. Here the Performance of 28T and 16T MOSFET based 1-bit full adder cell is characterized and compared with FinFET based 28T and 16T 1-bit full adders at various  technology nodes using HSPICE software. Results show that FinFET based full adder design gives better performance in terms of speed, power and reliability compared to MOSFET based full adder designs. Hence FinFET are promising candidates and better replacement for MOSFET.


2019 ◽  
Vol 15 (4) ◽  
pp. 609-612
Author(s):  
Kim Ho Yeap ◽  
Jun Yi Lee ◽  
Wei Long Yeo ◽  
Humaira Nisar ◽  
Siu Hong Loh

This paper presents the design, characterization, and analysis of a 10 nm silicon negative channel FinFET. To validate the design, we have simulated the output characteristics and transfer characteristics of the transistor. Both of which comply with the standard characteristics of an operational MOSFET. Owing to its efficacy in suppressing short channel effects, the leakage current of the tri-gate transistor is found to be low; whereas, the drive current is sufficiently high. We have also presented the design specifications of the transistor.


1993 ◽  
Vol 3 (9) ◽  
pp. 1719-1728
Author(s):  
P. Dollfus ◽  
P. Hesto ◽  
S. Galdin ◽  
C. Brisset

Author(s):  
Yuk L. Tsang ◽  
Xiang D. Wang ◽  
Reyhan Ricklefs ◽  
Jason Goertz

Abstract In this paper, we report a transistor model that has successfully led to the identification of a non visual defect. This model was based on detailed electrical characterization of a MOS NFET exhibiting a threshold voltage (Vt) of just about 40mv lower than normal. This small Vt delta was based on standard graphical extrapolation method in the usual linear Id-Vg plots. We observed, using a semilog plot, two slopes in the Id-Vg curves with Vt delta magnified significantly in the subthreshold region. The two slopes were attributed to two transistors in parallel with different Vts. We further found that one of the parallel transistors had short channel effect due to a punch-through mechanism. It was proposed and ultimately confirmed the cause was due to a dopant defect using scanning capacitance microscopy (SCM) technique.


Sign in / Sign up

Export Citation Format

Share Document