Localization of Dead Open in a Solder Bump by Space Domain Reflectometry

Author(s):  
David P. Vallett ◽  
Daniel A. Bader ◽  
Vladimir V. Talanov ◽  
Jan Gaudestad ◽  
Nicolas Gagliolo ◽  
...  

Abstract Space Domain Reflectometry (SDR) is a newly developed non-destructive failure analysis (FA) technique for localizing open defects in both packages and dies through mapping in space domain the magnetic field produced by a radio frequency (RF) current induced in the sample, herein the name Space Domain Reflectometry. The technique employs a scanning superconducting quantum interference device (SQUID) RF microscope operating over a frequency range from 60 to 200 MHz. In this paper we demonstrate that SDR is capable of locating defective micro bumps in a flip-chip device.

Author(s):  
W. Qiu ◽  
M.S. Wei ◽  
J. Gaudestad ◽  
V.V. Talanov

Abstract Space-domain reflectometry (SDR) utilizing scanning superconducting quantum interference device (SQUID) microscopy is a newly developed non-destructive failure analysis (FA) technique for open fault isolation. Unlike the conventional open fault isolation method, time-domain reflectometry (TDR), scanning SQUID SDR provides a truly two-dimensional physical image of device under test with spatial resolution down to 30 μm [1]. In this paper, the SQUID SDR technique is used to isolate dead open faults in flip-chip devices. The experimental results demonstrate the capability of SDR in open fault detection


Author(s):  
Steve K. Hsiung ◽  
Kevan V. Tan ◽  
John Soopikian

Abstract Packages with the Modified Daisy-chain (MDC) die have been used increasingly to accelerate reliability stress testing of IC packaging during package development, qualification, and evaluation and reliability monitor programs [1]. Utilizing this approach in essence eliminates chip circuit failure mechanisms. Unlike packages with active die, in packages with the MDC die, when short occurred between two daisy-chain pairs of I/Os, there are four possibilities that can attribute to each pin of the two daisy-chain pairs. That makes the isolation of short failure difficult. Time Domain Reflectometry (TDR) is a well-described technique to characterize package discontinuity (open or short failure). By using a bare package substrate and a reference device, an analyst can characterize the discontinuity and localize it: within the package, the die-package interconnects, or on the die [2]. Scanning SQUID (Superconducting Quantum Interference Device) Microscopy, known as SSM, is a non-destructive technique that detects magnetic fields generated by current. The magnetic field, when converted to current density via Fast Fourier Transform (FFT), is particularly useful to detect shorts and high resistance (HR) defects [3]. In this paper, a new methodology that combines Resistance Analysis, TDR Isolation and SSM Identification for electrical debugging short in packages with the MDC die will be presented. Case studies will also be discussed.


2021 ◽  
Author(s):  
Sean M. Oliver ◽  
Dmitro J. Martynowych ◽  
Matthew J. Turne ◽  
David A. Hopper ◽  
Ronald L. Walswort ◽  
...  

Abstract The increasing trend for industry adoption of three-dimensional (3D) microelectronics packaging necessitates the development of new and innovative approaches to failure analysis. To that end, our team is developing a tool called the quantum diamond microscope (QDM) that leverages an ensemble of nitrogenvacancy (NV) centers in diamond for simultaneous wide fieldof- view, high spatial resolution, vector magnetic field imaging of microelectronics under ambient conditions [1,2]. Here, we present QDM measurements of two-dimensional (2D) current distributions in an 8 nm process node flip chip integrated circuit (IC) and 3D current distributions in a custom, multi-layer printed circuit board (PCB). Magnetic field emanations from the C4 bumps in the flip chip dominate the QDM measurements, but these prove to be useful for image registration and can be subtracted to resolve adjacent current traces on the micron scale in the die. Vias, an important component in 3D ICs, display only Bx and By magnetic fields due to their vertical orientation, which are challenging to detect with magnetometers that traditionally only measure the Bz component of the magnetic field (orthogonal to the IC surface). Using the multi-layer PCB, we demonstrate that the QDM's ability to simultaneously measure Bx, By, and Bz magnetic field components in 3D structures is advantageous for resolving magnetic fields from vias as current passes between layers. The height difference between two conducting layers is determined by the magnetic field images and agrees with the PCB design specifications. In our initial steps to provide further z depth information for current sources in complex 3D circuits using the QDM, we demonstrate that, due to the linear properties of Maxwell's equations, magnetic field images of individual layers can be subtracted from the magnetic field image of the total structure. This allows for isolation of signal from individual layers in the device that can be used to map embedded current paths via solution of the 2D magnetic inverse. Such an approach suggests an iterative analysis protocol that utilizes neural networks trained with images containing various classes of current sources, standoff distances, and noise integrated with prior information of ICs to subtract current sources layer by layer and provide z depth information. This initial study demonstrates the usefulness of the QDM for failure analysis and points to technical advances of this technique to come.


Author(s):  
L. A. Knauss ◽  
B. M. Frazier ◽  
A. B. Cawthorne ◽  
E. Budiarto ◽  
R. Crandall ◽  
...  

Abstract With the arrival of flip-chip packaging, present tools and techniques are having increasing difficulty meeting failure-analysis needs. Recently a magneticfield imaging system has been used to localize shorts in buried layers of both packages and dies. Until now, these shorts have been powered directly through simple connections at the package. Power shorts are examples of direct shorts that can be powered through connections to Vdd and Vss at the package level. While power shorts are common types of failure, equally important are defects such as logic shorts, which cannot be powered through simple package connections. These defects must be indirectly activated by driving the part through a set of vectors. This makes the magnetic-field imaging process more complicated due to the large background currents present along with the defect current. Magnetic-field imaging is made possible through the use of a SQUID (Superconducting Quantum Interference Device), which is a very sensitive magnetic sensor that can image magnetic fields generated by magnetic materials or currents (such as those in an integrated circuit). The current-density distribution in the sample can then be calculated from the magnetic-field image revealing the locations of shorts and other current anomalies. Presented here is the application of a SQUID-based magnetic-field imaging system for isolation of indirect shorts. This system has been used to investigate shorts in two flip-chip-packaged SRAMs. Defect currents as small as 38 μA were imaged in a background of 1 A. The measurements were made using a lock-in thechnique and image subtraction. The magnetic-field image from one sample is compared with the results from a corresponding infrared-microscope image.


2016 ◽  
Vol 23 (2) ◽  
pp. 560-565 ◽  
Author(s):  
Keisuke Hatada ◽  
Kuniko Hayakawa ◽  
Fabrizio Palumbo ◽  
Augusto Marcelli

The occurrence of scissors modes in crystals that have deformed ions in their unit cells was predicted some time ago. The theoretical value of their energy is rather uncertain, however, ranging between ten and a few tens of eV, with the corresponding widths of 10−7to 10−6 eV. Their observation by resonance fluorescence experiments therefore requires a photon spectrometer covering a wide energy range with a very high resolving power. Here, a new experiment is proposed and discussed in which such difficulties are overcome by measuring with a superconducting quantum interference device (SQUID) the variation of the magnetic field associated with the excitation of scissors modes.


Author(s):  
L. A. Knauss ◽  
B. M. Frazier ◽  
H. M. Christen ◽  
S. D. Silliman ◽  
K. S. Harshavardhan ◽  
...  

Abstract As process technologies of integrated circuits become more complex and the industry moves toward flipchip packaging, present tools and techniques are having increasing difficulty in meeting failure analysis needs. One of the most common failures in these types of ICs and packages is power shorts, both during fabrication and in the field. Many techniques such as Emission Microscopy and Liquid Crystal are either not able to locate power shorts or are inhibited in their effectiveness by multiple layers of metal and flip-chip type packaging. A scanning SQUID microscope can overcome some of these difficulties. A SQUID (Superconducting Quantum Interference Device) is a very sensitive magnetic sensor that can image magnetic fields generated by magnetic materials or currents (such as those in an integrated circuit). The current density distribution in the sample can then be calculated from the magnetic field image, and resolutions approaching 5 times the near field limit can be obtained. We present here the application of a SQUID microscope to physical failure analysis and compare it with other techniques to detect shorted current paths in flip-chip mounted ICs and packages.


2018 ◽  
Author(s):  
Daechul Choi ◽  
Yoonseong Kim ◽  
Jongyun Kim ◽  
Han Kim

Abstract In this paper, we demonstrate cases for actual short and open failures in FCB (Flip Chip Bonding) substrates by using novel non-destructive techniques, known as SSM (Scanning Super-conducting Quantum Interference Device Microscopy) and Terahertz TDR (Time Domain Reflectometry) which is able to pinpoint failure locations. In addition, the defect location and accuracy is verified by a NIR (Near Infra-red) imaging system which is also one of the commonly used non-destructive failure analysis tools, and good agreement was made.


Author(s):  
George F. Gaut

Abstract Access to the solder bump and under-fill material of flip-chip devices has presented a new problem for failure analysts. The under-fill and solder bumps have also added a new source for failure causes. A new tool has become available that can reduce the time required to analyze this area of a flip-chip package. By using precision selective area milling it is possible to remove material (die or PCB) that will allow other tools to expose the source of the failure.


Author(s):  
O. Diaz de Leon ◽  
M. Nassirian ◽  
C. Todd ◽  
R. Chowdhury

Abstract Integration of circuits on semiconductor devices with resulting increase in pin counts is driving the need for improvements in packaging for functionality and reliability. One solution to this demand is the Flip- Chip concept in Ultra Large Scale Integration (ULSI) applications [1]. The flip-chip technology is based on the direct attach principle of die to substrate interconnection.. The absence of bondwires clearly enables packages to become more slim and compact, and also provides higher pin counts and higher-speeds [2]. However, due to its construction, with inherent hidden structures the Flip-Chip technology presents a challenge for non-destructive Failure Analysis (F/A). The scanning acoustic microscope (SAM) has recently emerged as a valuable evaluation tool for this purpose [3]. C-mode scanning acoustic microscope (C-SAM), has the ability to demonstrate non-destructive package analysis while imaging the internal features of this package. Ultrasonic waves are very sensitive, particularly when they encounter density variations at surfaces, e.g. variations such as voids or delaminations similar to air gaps. These two anomalies are common to flip-chips. The primary issue with this package technology is the non-uniformity of the die attach through solder ball joints and epoxy underfill. The ball joints also present defects as open contacts, voids or cracks. In our acoustic microscopy study packages with known defects are considered. It includes C-SCAN analysis giving top views at a particular package interface and a B-SCAN analysis that provides cross-sectional views at a desired point of interest. The cross-section analysis capability gives confidence to the failure analyst in obtaining information from a failing area without physically sectioning the sample and destroying its electrical integrity. Our results presented here prove that appropriate selection of acoustic scanning modes and frequency parameters leads to good reliable correlation between the physical defects in the devices and the information given by the acoustic microscope.


Sign in / Sign up

Export Citation Format

Share Document