Fluorosilicate Glass (FSG) Outgassing Induced Aluminum Bond Pad Corrosion during Post-Fab Wafer Storage

Author(s):  
Hua Younan ◽  
Nistala Ramesh Rao ◽  
Chen Shuting

Abstract A case study of Fluorine (F)-outgassing is presented in this paper that caused the corrosion of Aluminum bond pad. It will be shown that the source of F-contamination is not the typical residue left behind after the passivation etch with Fluorine-based gas chemistry and the subsequent removal of the etch polymer generated with solvent (chemical) clean. Rather, it is introduced as a result of F-outgas over a period of time from the intermetallic dielectric (IMD) film, fluorosilicate glass (FSG), during the post-fab wafer storage. The methodology used in our failure analysis (FA) lab to identify and characterize this type of failure mode is presented in the paper.

Author(s):  
Nicholas Konkol

Abstract Failure analysis at the system level requires a well-defined process and methodology in order to drive quality improvements onto motherboards or other subsystems of a personal computer. This process needs to be structured around the type of failure mechanisms that an FA group desires to understand. This paper discusses a specific case study involving electrical overstress in a personal computer that impacted the motherboard of the system. The case study resulted in a solution to increase quality on motherboards in the context of electrical overstress prevention.


Author(s):  
Erick Kim ◽  
Kamjou Mansour ◽  
Gil Garteiz ◽  
Javeck Verdugo ◽  
Ryan Ross ◽  
...  

Abstract This paper presents the failure analysis on a 1.5m flex harness for a space flight instrument that exhibited two failure modes: global isolation resistances between all adjacent traces measured tens of milliohm and lower resistance on the order of 1 kiloohm was observed on several pins. It shows a novel method using a temperature controlled air stream while monitoring isolation resistance to identify a general area of interest of a low isolation resistance failure. The paper explains how isolation resistance measurements were taken and details the steps taken in both destructive and non-destructive analyses. In theory, infrared hotspot could have been completed along the length of the flex harness to locate the failure site. However, with a field of view of approximately 5 x 5 cm, this technique would have been time prohibitive.


Author(s):  
Amy Poe ◽  
Steve Brockett ◽  
Tony Rubalcava

Abstract The intent of this work is to demonstrate the importance of charged device model (CDM) ESD testing and characterization by presenting a case study of a situation in which CDM testing proved invaluable in establishing the reliability of a GaAs radio frequency integrated circuit (RFIC). The problem originated when a sample of passing devices was retested to the final production test. Nine of the 200 sampled devices failed the retest, thus placing the reliability of all of the devices in question. The subsequent failure analysis indicated that the devices failed due to a short on one of two capacitors, bringing into question the reliability of the dielectric. Previous ESD characterization of the part had shown that a certain resistor was likely to fail at thresholds well below the level at which any capacitors were damaged. This paper will discuss the failure analysis techniques which were used and the testing performed to verify the failures were actually due to ESD, and not caused by weak capacitors.


Author(s):  
Ryan Xiao ◽  
William Wang ◽  
Ang Li ◽  
Shengqiu Xu ◽  
Binghai Liu

Abstract With the development of semiconductor technology and the increment quantity of metal layers in past few years, backside EFA (Electrical Failure Analysis) technology has become the dominant method. In this paper, abnormally high Signal Noise Ratio (SNR) signal captured by Electro-Optical Probing (EOP)/Laser Voltage Probing (LVP) from backside is shown and the cause of these phenomena are studied. Based on the real case collection, two kinds of failure mode are summarized, and simulated experiments are performed. The results indicate that when a current path from power to ground is formed, the high SNR signal can be captured at the transistor which was on this current path. It is helpful of this consequence for FA to identify the failure mode by high SNR signal.


Author(s):  
Kuo Hsiung Chen ◽  
Wen Sheng Wu ◽  
Yu Hsiang Shu ◽  
Jian Chan Lin

Abstract IR-OBIRCH (Infrared Ray – Optical Beam Induced Resistance Change) is one of the main failure analysis techniques [1] [2] [3] [4]. It is a useful tool to do fault localization on leakage failure cases such as poor Via or contact connection, FEoL or BEoL pattern bridge, and etc. But the real failure sites associated with the above failure mechanisms are not always found at the OBIRCH spot locations. Sometimes the real failure site is far away from the OBIRCH spot and it will result in inconclusive PFA Analysis. Finding the real failure site is what matters the most for fault localization detection. In this paper, we will introduce one case using deep sub-micron process generation which suffers serious high Isb current at wafer donut region. In this case study a BEoL Via poor connection is found far away from the OBIRCH spots. This implies that layout tracing skill and relation investigation among OBIRCH spots are needed for successful failure analysis.


Author(s):  
I. Österreicher ◽  
S. Eckl ◽  
B. Tippelt ◽  
S. Döring ◽  
R. Prang ◽  
...  

Abstract Depending on the field of application the ICs have to meet requirements that differ strongly from product to product, although they may be manufactured with similar technologies. In this paper a study of a failure mode is presented that occurs on chips which have passed all functional tests. Small differences in current consumption depending on the state of an applied pattern (delta Iddq measurement) are analyzed, although these differences are clearly within the usual specs. The challenge to apply the existing failure analysis techniques to these new fail modes is explained. The complete analysis flow from electrical test and Global Failure Localization to visualization is shown. The failure is localized by means of photon emission microscopy, further analyzed by Atomic Force Probing, and then visualized by SEM and TEM imaging.


Author(s):  
Tsung-Te Li ◽  
Chao-Chi Wu ◽  
Jung-Hsiang Chuang ◽  
Jon C. Lee

Abstract This article describes the electrical and physical analysis of gate leakage in nanometer transistors using conducting atomic force microscopy (C-AFM), nano-probing, transmission electron microscopy (TEM), and chemical decoration on simulated overstressed devices. A failure analysis case study involving a soft single bit failure is detailed. Following the nano-probing analysis, TEM cross sectioning of this failing device was performed. A voltage bias was applied to exaggerate the gate leakage site. Following this deliberate voltage overstress, a solution of boiling 10%wt KOH was used to etch decorate the gate leakage site followed by SEM inspection. Different transistor leakage behaviors can be identified with nano-probing measurements and then compared with simulation data for increased confidence in the failure analysis result. Nano-probing can be used to apply voltage stress on a transistor or a leakage path to worsen the weak point and then observe the leakage site easier.


Author(s):  
Re-Long Chiu ◽  
Jason Higgins ◽  
Toby Kinder ◽  
Juha Tyni ◽  
Sharon Ying ◽  
...  

Abstract High contact resistance can be caused by moisture absorption in low phosphorus content BPTEOS. Moisture diffused through the TiN glue layer is absorbed by the BPTEOS during subsequent thermal processes resulting in increased contact resistance. This failure mode was studied by combining different failure analysis methods and was confirmed by duplication on experimental wafers.


Author(s):  
Sarven Ipek ◽  
David Grosjean

Abstract The application of an individual failure analysis technique rarely provides the failure mechanism. More typically, the results of numerous techniques need to be combined and considered to locate and verify the correct failure mechanism. This paper describes a particular case in which different microscopy techniques (photon emission, laser signal injection, and current imaging) gave clues to the problem, which then needed to be combined with manual probing and a thorough understanding of the circuit to locate the defect. By combining probing of that circuit block with the mapping and emission results, the authors were able to understand the photon emission spots and the laser signal injection microscopy (LSIM) signatures to be effects of the defect. It also helped them narrow down the search for the defect so that LSIM on a small part of the circuit could lead to the actual defect.


Author(s):  
Martin Versen ◽  
Dorina Diaconescu ◽  
Jerome Touzel

Abstract The characterization of failure modes of DRAM is often straight forward if array related hard failures with specific addresses for localization are concerned. The paper presents a case study of a bitline oriented failure mode connected to a redundancy evaluation in the DRAM periphery. The failure mode analysis and fault modeling focus both on the root-cause and on the test aspects of the problem.


Sign in / Sign up

Export Citation Format

Share Document