Advantage of AFP Nanoprobing on the 28 nm Technology Failure Analysis

Author(s):  
C.Q. Chen ◽  
G.B. Ang ◽  
S.P. Zhao ◽  
Q. Alfred ◽  
N. Dayanand ◽  
...  

Abstract As the rapid developments of semiconductor manufacturing technologies, the CD of the device keep shrinking. The IC devices have a smaller feature sizes and higher densities, and thus there are many challenges come up in terms of the failure analysis and localized device characterization. Besides the challenge of smaller feature size, there is another challenge as well. Some of the traditional FA method can no longer be employed on advanced technologies, such as 28nm and beyond. Quickly and successfully isolating the failed location and obtaining electrical signature of the defect has become more of a challenge, especially for the device level analysis and characterization. AFP nanoprobing system provides some solutions to advanced nodes fault isolation through its AFM imaging mode of CAFM.

Author(s):  
A.M. Jakati ◽  
R. Deshpande ◽  
K.A. Serrels ◽  
P. Babighian ◽  
G. Dabney ◽  
...  

Abstract Advances in semiconductor manufacturing technologies have led to newer types of defects that are difficult to identify, causing longer yield ramp times. Traditionally, yield has been limited to random particle defects but layout systematic defects are increasingly dominating the fail paretos on advanced technologies. Identifying systematic defects precisely and rapidly is a must. This paper codifies a methodology that combines volume scan diagnosis and non-destructive electrical fault isolation techniques such as photon-emission microscopy, soft defect localization and laser voltage imaging/probing to debug manufacturing defects precisely.


Author(s):  
Chao-Chi Wu ◽  
Jon C. Lee ◽  
Jung-Hsiang Chuang ◽  
Tsung-Te Li

Abstract In general failure analysis cases, a less invasive fault isolation approach can be utilized to resolve a visual root cause defect. In the case of nano technology, visual defects are not readily resolved, due to an increase in non-visible defects. The nonvisible defects result in a lower success rate since conventional FA methods/tools are not efficient in identifying the failure root cause. For the advanced nanometer process, this phenomenon is becoming more common; therefore the utilization of advanced techniques are required to get more evidence to resolve the failure mechanism. The use of nanoprobe technology enables advanced device characterization h order to obtain more clues to the possible failure mechanism before utilizing the traditional physical failure analysis techniques.


Author(s):  
Ng Hui Peng ◽  
Teo Angela ◽  
Ang Ghim Boon ◽  
Yip Kim Hong ◽  
Chang Qing Chen ◽  
...  

Abstract With the rapid development of semiconductor manufacturing technologies, IC devices evolve to smaller feature sizes and higher densities, and thus the task of performing successful failure analysis (FA) is becoming increasingly difficult. Device miniaturization often requires high spatial resolution fault isolation and physical analysis [1]. To cater to the shrinking of devices, extensive process improvements have been conducted at the front-end-of-line (FEOL) structures. As a result, among the numerous types of defects leading to chip failure, FEOL defects are becoming more common for devices of advanced tech nodes [2]. Therefore, it becomes more complexity and difficulty on searching the physical defect. Sample preparation is a key activity in material and failure analysis. In order to image small structures or defects it is often necessary to remove excess material or layers hiding the feature of interest. Removing selected layers to isolate a structure is called delayering. It can be accomplished by chemical etching using liquid or plasma chemistry, or by mechanical means, by polishing off each unwanted layer.


Author(s):  
Hua Younan ◽  
Chu Susan ◽  
Gui Dong ◽  
Mo Zhiqiang ◽  
Xing Zhenxiang ◽  
...  

Abstract As device feature size continues to shrink, the reducing gate oxide thickness puts more stringent requirements on gate dielectric quality in terms of defect density and contamination concentration. As a result, analyzing gate oxide integrity and dielectric breakdown failures during wafer fabrication becomes more difficult. Using a traditional FA flow and methods some defects were observed after electrical fault isolation using emission microscopic tools such as EMMI and TIVA. Even with some success with conventional FA the root cause was unclear. In this paper, we will propose an analysis flow for GOI failures to improve FA’s success rate. In this new proposed flow both a chemical method, Wright Etch, and SIMS analysis techniques are employed to identify root cause of the GOI failures after EFA fault isolation. In general, the shape of the defect might provide information as to the root cause of the GOI failure, whether related to PID or contamination. However, Wright Etch results are inadequate to answer the questions of whether the failure is caused by contamination or not. If there is a contaminate another technique is required to determine what the contaminant is and where it comes from. If the failure is confirmed to be due to contamination, SIMS is used to further determine the contamination source at the ppm-ppb level. In this paper, a real case of GOI failure will be discussed and presented. Using the new failure analysis flow, the root cause was identified to be iron contamination introduced from a worn out part made of stainless steel.


Author(s):  
Michael B. Schmidt ◽  
Noor Jehan Saujauddin

Abstract Scan testing and passive voltage contrast (PVC) techniques have been widely used as failure analysis fault isolation tools. Scan diagnosis can narrow a failure to a given net and passive voltage contrast can give real-time, large-scale electronic information about a sample at various stages of deprocessing. In the highly competitive and challenging environment of today, failure analysis cycle time is very important. By combining scan FA with a much higher sensitivity passive voltage contrast technique, one can quickly find defects that have traditionally posed a great challenge.


Author(s):  
Andrew J. Komrowski ◽  
N. S. Somcio ◽  
Daniel J. D. Sullivan ◽  
Charles R. Silvis ◽  
Luis Curiel ◽  
...  

Abstract The use of flip chip technology inside component packaging, so called flip chip in package (FCIP), is an increasingly common package type in the semiconductor industry because of high pin-counts, performance and reliability. Sample preparation methods and flows which enable physical failure analysis (PFA) of FCIP are thus in demand to characterize defects in die with these package types. As interconnect metallization schemes become more dense and complex, access to the backside silicon of a functional device also becomes important for fault isolation test purposes. To address these requirements, a detailed PFA flow is described which chronicles the sample preparation methods necessary to isolate a physical defect in the die of an organic-substrate FCIP.


Author(s):  
C.Q. Chen ◽  
P.T. Ng ◽  
G.B. Ang ◽  
Francis Rivai ◽  
S.L. Ting ◽  
...  

Abstract As semiconductor technology keeps scaling down, failure analysis and device characterizations become more and more challenging. Global fault isolation without detailed circuit information comprises the majority of foundry EFA cases. Certain suspected areas can be isolated, but further narrow-down of transistor and device performance is very important with regards to process monitoring and failure analysis. A nanoprobing methodology is widely applied in advanced failure analysis, especially during device level electrical characterization. It is useful to verify device performance and to prove the problematic structure electrically. But sometimes the EFA spot coverage is too big to do nanoprobing analysis. Then further narrow-down is quite critical to identify the suspected structure before nanoprobing is employed. That means there is a gap between global fault isolation and localized device analysis. Under these kinds of situation, PVC and AFP current image are offen options to identify the suspected structure, but they still have their limitation for many soft defect or marginal fails. As in this case, PVC and AFP current image failed to identify the defect in the spot range. To overcome the shortage of PVC and AFP current image analysis, laser was innovatively applied in our current image analysis in this paper. As is known to all, proper wavelength laser can induce the photovoltaic effect in the device. The photovoltaic effect induced photo current can bring with it some information of the device. If this kind of information was properly interpreted, it can give us some clue of the device performance.


Author(s):  
Sebastian Brand ◽  
Matthias Petzold ◽  
Peter Czurratis ◽  
Peter Hoffrogge

Abstract In industrial manufacturing of microelectronic components, non-destructive failure analysis methods are required for either quality control or for providing a rapid fault isolation and defect localization prior to detailed investigations requiring target preparation. Scanning acoustic microscopy (SAM) is a powerful tool enabling the inspection of internal structures in optically opaque materials non-destructively. In addition, depth specific information can be employed for two- and three-dimensional internal imaging without the need of time consuming tomographic scan procedures. The resolution achievable by acoustic microscopy is depending on parameters of both the test equipment and the sample under investigation. However, if applying acoustic microscopy for pure intensity imaging most of its potential remains unused. The aim of the current work was the development of a comprehensive analysis toolbox for extending the application of SAM by employing its full potential. Thus, typical case examples representing different fields of application were considered ranging from high density interconnect flip-chip devices over wafer-bonded components to solder tape connectors of a photovoltaic (PV) solar panel. The progress achieved during this work can be split into three categories: Signal Analysis and Parametric Imaging (SA-PI), Signal Analysis and Defect Evaluation (SA-DE) and Image Processing and Resolution Enhancement (IP-RE). Data acquisition was performed using a commercially available scanning acoustic microscope equipped with several ultrasonic transducers covering the frequency range from 15 MHz to 175 MHz. The acoustic data recorded were subjected to sophisticated algorithms operating in time-, frequency- and spatial domain for performing signal- and image analysis. In all three of the presented applications acoustic microscopy combined with signal- and image processing algorithms proved to be a powerful tool for non-destructive inspection.


Author(s):  
Sarven Ipek ◽  
David Grosjean

Abstract The application of an individual failure analysis technique rarely provides the failure mechanism. More typically, the results of numerous techniques need to be combined and considered to locate and verify the correct failure mechanism. This paper describes a particular case in which different microscopy techniques (photon emission, laser signal injection, and current imaging) gave clues to the problem, which then needed to be combined with manual probing and a thorough understanding of the circuit to locate the defect. By combining probing of that circuit block with the mapping and emission results, the authors were able to understand the photon emission spots and the laser signal injection microscopy (LSIM) signatures to be effects of the defect. It also helped them narrow down the search for the defect so that LSIM on a small part of the circuit could lead to the actual defect.


Sign in / Sign up

Export Citation Format

Share Document