Automated Multi-Level Circuit Net Trace for Hotspot Analysis

Author(s):  
S. H. Goh ◽  
E. Susanto ◽  
Song Li ◽  
B. L. Yeoh ◽  
M. H. THor ◽  
...  

Abstract Post-fault isolation layout net trace and circuit analysis based on abnormal hotspots is a critical step because it directly impacts the outcome of failure analysis. In this work, we review current commercial net tracing solutions in terms of their strengths and drawbacks. As an enhancement, a new net methodology that enables automation and the capability to execute tracing beyond first-level transistors is introduced. This approach could potentially eliminate manual net tracing and significantly improves the overall failure analysis turnaround time.

Author(s):  
Varun Gupta ◽  
Wee Yee Wendy Lau ◽  
S.H. Goh ◽  
H.W. Ho ◽  
B.L. Yeoh ◽  
...  

Abstract In a failure event, circuit schematic analysis usually follows after fault isolation to increase the success rate. However, analyzing an extracted netlist of the isolated sub-circuit can be messy. Manual circuit translation from layout where the analyst is in control of the cell instance placement is one way to overcome this challenge. Although it is neater and intuitive for analysis, it can be time consuming to create the schematic. To analyze circuits in a systematic manner, cross-mapping between layout and schematic contents is the most commonly recognized approach. However, at times, cross-mapping alone is insufficient and some further simplification procedures are favorable. This paper describes the challenges and illustrates using real case studies, how schematics re-ordering and substitutions can be useful to simplify and enhance circuit analysis. These procedures can be implemented in an automated manner to enhance turnaround time for analysis.


Author(s):  
Chia Ling Kong ◽  
Mohammed R. Islam

Abstract Fault Isolation / Failure Analysis (FI/FA) of increasingly complex embedded memory in microprocessors is becoming more difficult due to process scaling and presence of subtle defects. As physical failure analysis (PFA) is destructive and involves expensive and time-consuming processes, fault diagnosis needs to be as precise as possible to ensure successful physical defect sighting. This paper introduces a cache Fault Isolation methodology that focuses on exhaustive data collection to derive concrete hypothesis of physical fault location and to overcome the existing FA/FI challenges. The methodology involves a novel application of existing DFT techniques in combination with circuit analysis, pattern hacking, defect localization and PFA tools. Some of the techniques, for example pattern modification or circuit simulation, are applied repeatedly in order to obtain higher-level of isolation – from cell/logic level to transistor/gate level, and finally down to physical structure/layer level. This multi-level FI approach is the key to localize the failing area to greater precision, which had proven itself in Intel Itanium® II processor yield improvement process.


Author(s):  
Hua Younan ◽  
Chu Susan ◽  
Gui Dong ◽  
Mo Zhiqiang ◽  
Xing Zhenxiang ◽  
...  

Abstract As device feature size continues to shrink, the reducing gate oxide thickness puts more stringent requirements on gate dielectric quality in terms of defect density and contamination concentration. As a result, analyzing gate oxide integrity and dielectric breakdown failures during wafer fabrication becomes more difficult. Using a traditional FA flow and methods some defects were observed after electrical fault isolation using emission microscopic tools such as EMMI and TIVA. Even with some success with conventional FA the root cause was unclear. In this paper, we will propose an analysis flow for GOI failures to improve FA’s success rate. In this new proposed flow both a chemical method, Wright Etch, and SIMS analysis techniques are employed to identify root cause of the GOI failures after EFA fault isolation. In general, the shape of the defect might provide information as to the root cause of the GOI failure, whether related to PID or contamination. However, Wright Etch results are inadequate to answer the questions of whether the failure is caused by contamination or not. If there is a contaminate another technique is required to determine what the contaminant is and where it comes from. If the failure is confirmed to be due to contamination, SIMS is used to further determine the contamination source at the ppm-ppb level. In this paper, a real case of GOI failure will be discussed and presented. Using the new failure analysis flow, the root cause was identified to be iron contamination introduced from a worn out part made of stainless steel.


Author(s):  
Michael B. Schmidt ◽  
Noor Jehan Saujauddin

Abstract Scan testing and passive voltage contrast (PVC) techniques have been widely used as failure analysis fault isolation tools. Scan diagnosis can narrow a failure to a given net and passive voltage contrast can give real-time, large-scale electronic information about a sample at various stages of deprocessing. In the highly competitive and challenging environment of today, failure analysis cycle time is very important. By combining scan FA with a much higher sensitivity passive voltage contrast technique, one can quickly find defects that have traditionally posed a great challenge.


Author(s):  
Andrew J. Komrowski ◽  
N. S. Somcio ◽  
Daniel J. D. Sullivan ◽  
Charles R. Silvis ◽  
Luis Curiel ◽  
...  

Abstract The use of flip chip technology inside component packaging, so called flip chip in package (FCIP), is an increasingly common package type in the semiconductor industry because of high pin-counts, performance and reliability. Sample preparation methods and flows which enable physical failure analysis (PFA) of FCIP are thus in demand to characterize defects in die with these package types. As interconnect metallization schemes become more dense and complex, access to the backside silicon of a functional device also becomes important for fault isolation test purposes. To address these requirements, a detailed PFA flow is described which chronicles the sample preparation methods necessary to isolate a physical defect in the die of an organic-substrate FCIP.


Author(s):  
C.Q. Chen ◽  
P.T. Ng ◽  
G.B. Ang ◽  
Francis Rivai ◽  
S.L. Ting ◽  
...  

Abstract As semiconductor technology keeps scaling down, failure analysis and device characterizations become more and more challenging. Global fault isolation without detailed circuit information comprises the majority of foundry EFA cases. Certain suspected areas can be isolated, but further narrow-down of transistor and device performance is very important with regards to process monitoring and failure analysis. A nanoprobing methodology is widely applied in advanced failure analysis, especially during device level electrical characterization. It is useful to verify device performance and to prove the problematic structure electrically. But sometimes the EFA spot coverage is too big to do nanoprobing analysis. Then further narrow-down is quite critical to identify the suspected structure before nanoprobing is employed. That means there is a gap between global fault isolation and localized device analysis. Under these kinds of situation, PVC and AFP current image are offen options to identify the suspected structure, but they still have their limitation for many soft defect or marginal fails. As in this case, PVC and AFP current image failed to identify the defect in the spot range. To overcome the shortage of PVC and AFP current image analysis, laser was innovatively applied in our current image analysis in this paper. As is known to all, proper wavelength laser can induce the photovoltaic effect in the device. The photovoltaic effect induced photo current can bring with it some information of the device. If this kind of information was properly interpreted, it can give us some clue of the device performance.


Author(s):  
Sebastian Brand ◽  
Matthias Petzold ◽  
Peter Czurratis ◽  
Peter Hoffrogge

Abstract In industrial manufacturing of microelectronic components, non-destructive failure analysis methods are required for either quality control or for providing a rapid fault isolation and defect localization prior to detailed investigations requiring target preparation. Scanning acoustic microscopy (SAM) is a powerful tool enabling the inspection of internal structures in optically opaque materials non-destructively. In addition, depth specific information can be employed for two- and three-dimensional internal imaging without the need of time consuming tomographic scan procedures. The resolution achievable by acoustic microscopy is depending on parameters of both the test equipment and the sample under investigation. However, if applying acoustic microscopy for pure intensity imaging most of its potential remains unused. The aim of the current work was the development of a comprehensive analysis toolbox for extending the application of SAM by employing its full potential. Thus, typical case examples representing different fields of application were considered ranging from high density interconnect flip-chip devices over wafer-bonded components to solder tape connectors of a photovoltaic (PV) solar panel. The progress achieved during this work can be split into three categories: Signal Analysis and Parametric Imaging (SA-PI), Signal Analysis and Defect Evaluation (SA-DE) and Image Processing and Resolution Enhancement (IP-RE). Data acquisition was performed using a commercially available scanning acoustic microscope equipped with several ultrasonic transducers covering the frequency range from 15 MHz to 175 MHz. The acoustic data recorded were subjected to sophisticated algorithms operating in time-, frequency- and spatial domain for performing signal- and image analysis. In all three of the presented applications acoustic microscopy combined with signal- and image processing algorithms proved to be a powerful tool for non-destructive inspection.


Author(s):  
Sarven Ipek ◽  
David Grosjean

Abstract The application of an individual failure analysis technique rarely provides the failure mechanism. More typically, the results of numerous techniques need to be combined and considered to locate and verify the correct failure mechanism. This paper describes a particular case in which different microscopy techniques (photon emission, laser signal injection, and current imaging) gave clues to the problem, which then needed to be combined with manual probing and a thorough understanding of the circuit to locate the defect. By combining probing of that circuit block with the mapping and emission results, the authors were able to understand the photon emission spots and the laser signal injection microscopy (LSIM) signatures to be effects of the defect. It also helped them narrow down the search for the defect so that LSIM on a small part of the circuit could lead to the actual defect.


Author(s):  
M.K. Dawood ◽  
C. Chen ◽  
P.K. Tan ◽  
S. James ◽  
P.S. Limin ◽  
...  

Abstract In this work, we present two case studies on the utilization of advanced nanoprobing on 20nm logic devices at contact layer to identify the root cause of scan logic failures. In both cases, conventional failure analysis followed by inspection of passive voltage contrast (PVC) failed to identify any abnormality in the devices. Technology advancement makes identifying failure mechanisms increasingly more challenging using conventional methods of physical failure analysis (PFA). Almost all PFA cases for 20nm technology node devices and beyond require Transmission Electron Microscopy (TEM) analysis. Before TEM analysis can be performed, fault isolation is required to correctly determine the precise failing location. Isolated transistor probing was performed on the suspected logic NMOS and PMOS transistors to identify the failing transistors for TEM analysis. In this paper, nanoprobing was used to isolate the failing transistor of a logic cell. Nanoprobing revealed anomalies between the drain and bulk junction which was found to be due to contact gouging of different severities.


Author(s):  
Y. N. Hua ◽  
Z. R. Guo ◽  
L. H. An ◽  
Shailesh Redkar

Abstract In this paper, some low yield cases in Flat ROM device (0.45 and 0.6 µm) were investigated. To find killer defects and particle contamination, KLA, bitmap and emission microscopy techniques were used in fault isolation. Reactive ion etching (RIE) and chemical delayering, 155 Wright Etch, BN+ Etch and scanning electron microscope (SEM) were used for identification and inspection of defects. In addition, energy-dispersive X-ray microanalysis (EDX) was used to determine the composition of the particle or contamination. During failure analysis, seven kinds of killer defects and three killer particles were found in Flat ROM devices. The possible root causes, mechanisms and elimination solutions of these killer defects/particles were also discussed.


Sign in / Sign up

Export Citation Format

Share Document