scholarly journals Failure Localization Techniques for 7nm & 16nm Process Nodes in Monolithic & 2.5D SSIT Package Technology Using OBIRCH, LVP and Advance Die Thinning Method

Author(s):  
Daniel Nuez ◽  
Phoumra Tan ◽  
Daisy Lu ◽  
Benhai Zhang ◽  
Joshua Miller ◽  
...  

Abstract High performance IC's have driven the semiconductor industry towards the sub-nanometer technology nodes for several years. At 16nm and beyond, the spatial resolution and sensitivity of some diagnostic equipment used for failure analysis have reached certain limitations. The accuracy of isolating a faulty signal in a tightly packed group of transistors in a die becomes more challenging. However, with the improvement of SIL (Solid Immersion Lens) based lens technology with higher N.A. (Numeric Aperture), combined with precision die thinning process, allowed some very promising results. This paper demonstrates successful diagnostic techniques utilizing the SIL lens and a variety of die thinning preparation techniques on 7nm and 16nm process nodes in both monolithic and 2.5D SSIT (Stacked Silicon Interconnect Technology) packages.

2005 ◽  
Vol 33 (1) ◽  
pp. 128-135 ◽  
Author(s):  
Louis Archambault ◽  
A. Sam Beddar ◽  
Luc Gingras ◽  
René Roy ◽  
Luc Beaulieu

1998 ◽  
Vol 514 ◽  
Author(s):  
D. Edelstein

ABSTRACTRecently IBM announced the first implementation of full copper ULSI wiring in a CMOS technology, to be manufactured on its high-performance 0.22 um CMOS products this year. Features of this technology will be presented, as well as functional verification on CMOS chips. To reach this level, extensive yield, reliability, and stress testing had to be done on test and product-like chips, including those packaged into product modules. Data will be presented fom all aspects of this testing, ranging from experiments designed to promote Cu contamination of the MOS devices, to temperature/humidity/bias stressing of assembled functional modules. The results in all areas are shown to be equal to or better than standards set by our current AI(Cu)/Wstud technology. This demonstrates that the potential problems associated with copper wiring that have long been discussed can be overcome.


2020 ◽  
Vol 6 (51) ◽  
pp. eabc4904
Author(s):  
David A. Shapiro ◽  
Sergey Babin ◽  
Richard S. Celestre ◽  
Weilun Chao ◽  
Raymond P. Conley ◽  
...  

The analysis of chemical states and morphology in nanomaterials is central to many areas of science. We address this need with an ultrahigh-resolution scanning transmission soft x-ray microscope. Our instrument provides multiple analysis tools in a compact assembly and can achieve few-nanometer spatial resolution and high chemical sensitivity via x-ray ptychography and conventional scanning microscopy. A novel scanning mechanism, coupled to advanced x-ray detectors, a high-brightness x-ray source, and high-performance computing for analysis provide a revolutionary step forward in terms of imaging speed and resolution. We present x-ray microscopy with 8-nm full-period spatial resolution and use this capability in conjunction with operando sample environments and cryogenic imaging, which are now routinely available. Our multimodal approach will find wide use across many fields of science and facilitate correlative analysis of materials with other types of probes.


2019 ◽  
Vol 9 (3) ◽  
pp. 374 ◽  
Author(s):  
Mohsin Zafar ◽  
Karl Kratkiewicz ◽  
Rayyan Manwar ◽  
Mohammad Avanaki

A low-cost Photoacoustic Computed Tomography (PACT) system consisting of 16 single-element transducers has been developed. Our design proposes a fast rotating mechanism of 360o rotation around the imaging target, generating comparable images to those produced by large-number-element (e.g., 512, 1024, etc.) ring-array PACT systems. The 2D images with a temporal resolution of 1.5 s and a spatial resolution of 240 µm were achieved. The performance of the proposed system was evaluated by imaging complex phantom. The purpose of the proposed development is to provide researchers a low-cost alternative 2D photoacoustic computed tomography system with comparable resolution to the current high performance expensive ring-array PACT systems.


2010 ◽  
Vol 1266 ◽  
Author(s):  
Dechao Wang ◽  
Anji Reddy Munnangi ◽  
Horst Hahn ◽  
Max Fichtner

AbstractSolid-state based battery technology offers, in principle, the largest temperature range (from room temperature to 500 °C) of any battery technology. In fluoride based batteries, the chemical reaction used to create electrical energy is a solid-state reaction of a metal with fluoride anion [1]. Among the various types of solid preparation techniques, the mechanochemical synthesis has been recognized as a powerful route to novel, high-performance, and low-cost materials [2]. Thus, a mixed and highly disordered fluoride phase with retained cubic symmetry can be obtained with a very high Fˉ diffusivity [3].In our group, a series of new electrolytes was developed, namely LaF3-BaF2-KF solid solutions, using mechanosynthesis method. The cubic structure of the product was confirmed by XRD. The nanoscale nature and morphology of the samples were characterized by SEM and TEM. First Solid-state electrochemical cells were built with LiF based composite cathode, LaF3-BaF2-KF derived electrolyte and Fe based composite anode.


2015 ◽  
Vol 2015 (DPC) ◽  
pp. 001531-001563
Author(s):  
Arnd Kilian ◽  
Gustavo Ramos ◽  
Rick Nichols ◽  
Robin Taylor ◽  
Vanessa Smet ◽  
...  

One constant in electronic system integration is the continuous trend towards smaller devices with increased functionality, driven by emerging mobile and high-performance applications. This brings the need for higher bandwidth at lower power, translating into increased I/O density, to enable highly-integrated systems with form factor reduction. These requirements result in the necessity of interconnection pitch-scaling, below 30 μm in the near future, and substrates with high wiring densities, leading to routing with sub 5 μm L/S where standard surface finishes (ENIG, ENEPIG) are no longer applicable. Copper pillar with solder caps technology is currently the prevalent solution for off-chip interconnections at fine pitch, dominating the high performance and mobile market with pitches as low as 40 μm in production. However, this technology faces many fundamental limitations in pitch scaling below 30 μm, due to solder bridging, IMC-solder interfacial stress management, and poor power handling capability of solders. All-copper interconnections without solder are very sought after by the semiconductor industry and have been applied to 3D-IC stacking, however no cost effective, manufacturable and scalable solution has been proposed to date for HVM and application to non CTE matched package structures. The low temperature Cu-Cu interconnection technology without solder recently patented by Georgia Tech PRC is one of the most promising solutions to this problem. The main bottleneck of copper oxidation is dealt with by application of ENIG on the Cu bumps and pads, enabling formation of a reliable metallurgical bond by thermocompression bonding (TCB) at temperatures below 200°C, in air, with cycle-times compatible with HVM targets. However, to ensure a bump collapse of 3 μm to overcome non-coplanarities and warpage, a pressure of 300MPa is used in the Process-of-Record (PoR) conditions, limiting the scalability of this technology. This paper introduces a novel Electroless Palladium / Autocatalytic Gold (EPAG) surface finish process, to enable the next generation of high density substrates and interconnections. With circa 100nm-thin Pd and Au layers, the EPAG finish can be applied to fine L/S wiring, with no risk of bridging adjacent Cu traces, even with spacing below 5 μm. Further, the EPAG finish is compatible with current interconnection processes; such as wire bonding, and the Cu pillar and solder cap technology for fine-pitch applications. For further pitch reduction, the EPAG surface finish was coupled to GT PRC's low-temperature Cu-interconnections, in an effort to reduce the bonding load for enhanced manufacturability without degrading the metallurgical bond or reliability. This paper is the first demonstration of such interconnections. The effect of the surface finish thickness and composition on the bonding load, assembly yield, quality of the metallurgical bond was extensively evaluated based on analysis of the metal interface microstructures and the chemical composition of the joints. The current PoR using Electroless Nickel / Immersion Gold (ENIG) coated Cu pillars and pads was used as reference. A novel surface finish is introduced, which allows formation of Cu-Cu interconnections without solder at lower pressure, between a silicon die and glass, organic or silicon substrate at fine pitch, allowing the performance improvements demanded by the IC Packaging Industry.


2018 ◽  
Vol 2018 (1) ◽  
pp. 000125-000128
Author(s):  
Ruby Ann M. Camenforte ◽  
Jason Colte ◽  
Richard Sumalinog ◽  
Sylvester Sanchez ◽  
Jaimal Williamson

Abstract Overmolded Flip Chip Quad Flat No-lead (FCQFN) is a low cost flip chip on leadframe package where there is no need for underfill, and is compatible with Pb free or high Pb metallurgy. A robust leadframe design, quality solder joint formation and an excellent molding process are three factors needed to assemble a high performance FCQFN. It combines the best of both wirebonded QFN and wafer chip scale devices. For example, wafer chip scale has low resistance, but inadequate thermal performance (due to absence of thermal pad), whereas wirebonded QFN has good thermal performance (i.e., heat dissipated through conductive die attach material, through the pad and to the board) but higher resistance. Flip chip QFN combines both positive aspects – that is: low resistance and good thermals. One of the common defects for molded packages across the semiconductor industry is the occurrence of mold voiding as this can potentially affect the performance of a device. This paper will discuss how mold voiding is mitigated by understanding the mold compound behavior on flip chip QFN packages. Taking for example the turbulent mold flow observed on flip chip QFN causing mold voids. Mold compound material itself has a great contribution to mold voids, hence defining the correct attributes of the mold compound is critical. Altering the mold compound property to decrease the mold compound rheology is a key factor. This dynamic interaction between mold compound and flip chip QFN package configuration is the basis for a series of design of experiments using a full factorial matrix. Key investigation points are establishing balance in mold compound chemistry allowing flow between bump pitch, as well as the mold compound rheology, where gelation time has to be properly computed to allow flow across the leadframe. Understanding the flow-ability of mold compound for FCQFN, the speed of flow was optimized to check on its impact on mold voids. Mold airflow optimization is also needed to help fill in tighter bump spacing but vacuum-on time needs to be optimized as well.


2014 ◽  
Vol 2014 (1) ◽  
pp. 000141-000147 ◽  
Author(s):  
John M. Lauffer ◽  
Kevin Knadle

Common themes across all segments of electronic packaging today are density and performance. High density interconnect (HDI) technology is one of the most commonly utilized methods for electronic package density improvement, while many different areas have been investigated for performance improvement, from low loss dielectric and conductor materials, to via design and via stub reduction. Electrical performance and density requirements are sometimes complementary, but often times, conflicting with one another. This paper will describe the design, materials, fabrication, and reliability of a new Z-Interconnect technology that addresses both high density and high performance demands simultaneously. Z-Interconnect technology uses an electrically conductive adhesive to electrically interconnect several cores (Full Z) or sub-composites (Sub Z) in a single lamination process. Z-Interconnect technology will be compared and contrasted to other commonly used solutions to the performance and density challenges. HDI or sequential build-up technology is a pervasive solution to the density demands in semiconductor packaging and consumer electronics (e.g. Smart phones), but has not caught hold in HPC or A&D printed wiring board (PWB) applications. One solution for PWB electrical performance enhancement is plated through hole (PTH) stub reduction by “back drilling” the unwanted portion of the PTH. Pb-free reflow and Current Induced Thermal Cycling (CITC) test results of product coupons and specially designed test vehicles, having component pitches down to 0.4mm, will be presented. Z-Interconnect test vehicles have survived 6X Pb-free (260C) reflow cycles, followed by greater than 3000 cycles of 23C–150C CITC cycles. Test vehicle and product coupons also easily survive 10 or more 23C–260C CITC cycles.


2014 ◽  
Vol 2014 (1) ◽  
pp. 000599-000605 ◽  
Author(s):  
Woon-Seong Kwon ◽  
Suresh Ramalingam ◽  
Xin Wu ◽  
Liam Madden ◽  
C. Y. Huang ◽  
...  

This paper introduces the first comprehensive demonstration of new disruptive innovation technology comprising multiple Xilinx patent-pending innovations for highly cost effective and high performance Xilinx FPGA, which is so called stack silicon-less interconnect technology (SLIT) that provides the equivalent high-bandwidth connectivity and routing design-rule as stack silicon interconnect (SSI) technology at a cost-effective manner. We have successfully demonstrated the overall process integration and functions of our new SLIT-employed package using Virtex® -7 2000T FPGA product. Chip-to-Wafer stacking, wafer level flux cleaning, micro-bump underfilling, mold encapsulation are newly developed. Of all technology elements, both full silicon etching with high etch selectivity to dielectric/fast etch rate and wafer warpage management after full silicon etching are most crucial elements to realize the SLIT technology. In order to manage the wafer warpage after full Si removal, a couple of knobs are identified and employed such as top reinforcement layer, micro-bump underfill properties tuning, die thickness/die-to-die space/total thickness adjustments. It's also discussed in the paper how the wafer warpage behaves and how the wafer warpge is managed. New SLIT module shows excellent warpage characteristics of only −30 μm ~ −40 μm at room temperature for 25 mm × 31 mm in size and +20 μm ~ +25 μm at reflow temperature. Thermal simulation results shows that thermal resistance of new SLIT package is almost comparable to that of standard 2000T FCBGA package using TSV interposer with standard heat sink configuration and air wind condition. The reliability assessment is now under the study.


Sign in / Sign up

Export Citation Format

Share Document