Electrical Properties

1983 ◽  
pp. 163-201
Author(s):  
F. R. Fickett

Abstract This chapter presents topics pertaining to resistance at cryogenic temperatures: measurement, the resistive mechanisms, and available data. The chapter also presents brief descriptions of the various mechanisms that are operative in producing resistance at low temperatures. The alloys discussed are the nondilute mixtures of metals. An introduction to low-temperature electrical properties of specific metals and alloys is included.

1983 ◽  
pp. 237-267
Author(s):  
D. T. Read

Abstract The mechanical properties of a material describe the relations between the stresses acting on the material and its resulting deformations. Stresses capable of producing permanent deformations, which remain after the stresses are removed, are considered in this chapter. The effects of cryogenic temperatures on the mechanical properties of metals and alloys are reviewed in this chapter; the effects on polymers and glasses are discussed briefly. The fundamental mechanisms controlling temperature-dependent mechanical behavior, phenomena encountered in low-temperature testing, and the mechanical properties of some representative engineering metals and alloys are described. Modifications of test procedures for low temperatures and sources of data are also included.


2017 ◽  
Vol 13 (4) ◽  
pp. 4910-4918
Author(s):  
A. M. Abd El-Maksood

            Applications of wave-shaping clipping circuits based on Zener diodes are of great interest in a wide range of modern electronic systems. As well, given the strong interest in space research and trips to distant planets, where the journey takes long periods. Therefore, the matter requires reliance on electronic systems with special specifications commensurate with the nature of the extremely low-temperature environments, down to cryogenic level (around 90 K). So, the present paper was concerned with studying the stability of the performance of different non-linear wave-shaping systems, based on silicon Zener diodes, whenever operates at very low temperatures down to cryogenic levels. From which, it is clear that for BZX79-C4V7 and BZX79-C5V6 Zeners, such electronic systems were shown to be insensitive to temperature variations. On the other hand, low breakdown voltage Zeners (BZV86-1V4 and BZX83-C3V6), the clipping edges were shown to be increased with lowering temperatures from 300 K down to 93 K. Finally, for Zener diodes with VZ greater than 6.0 V (BZX83-C6V8 and BZX55C9V1), the temperature coefficient is positive, so the clipping edges decrease with lowering temperatures, for the same range of temperatures.


Author(s):  
F. H. Louchet ◽  
L. P. Kubin

Experiments have been carried out on the 3 MeV electron microscope in Toulouse. The low temperature straining holder has been previously described Images given by an image intensifier are recorded on magnetic tape.The microtensile niobium samples are cut in a plane with the two operative slip directions [111] and lying in the foil plane. The tensile axis is near [011].Our results concern:- The transition temperature of niobium near 220 K: at this temperature and below an increasing difference appears between the mobilities of the screw and edge portions of dislocations loops. Source operation and interactions between screw dislocations of different slip system have been recorded.


Physica ◽  
1954 ◽  
Vol 3 (7-12) ◽  
pp. 834-844 ◽  
Author(s):  
H FRITZSCHE ◽  
K LARKHOROVITZ

Alloy Digest ◽  
2008 ◽  
Vol 57 (1) ◽  

Abstract Invar is an Fe-Ni alloy with 36% Ni content that exhibits the lowest expansion of known metals from very low temperatures up to approximately 230 deg C (445 deg F). Invar M93 is a cryogenic Invar with improved weldability. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear and bend strength as well as fracture toughness and fatigue. It also includes information on low temperature performance as well as forming and joining. Filing Code: FE-143. Producer or source: Metalimphy Precision Alloys.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 656
Author(s):  
Junjie Shu ◽  
Yang Wang ◽  
Bei Guo ◽  
Weihua Qin ◽  
Lanxuan Liu ◽  
...  

Silver-based high-conductivity coatings are used in many advanced manufacturing equipment and components, and existing coatings require high-temperature curing. This paper studies the effects of different curing agents on the electrical properties of low-temperature curing (<100 °C) conductive coatings, and analyzes the effects of different curing temperatures and curing time on the surface resistance, square resistance and resistivity of conductive coatings. The response surface method in Design Expert was used to construct the model, and the curing thermodynamics of different curing agents were analyzed by DSC. It was found that curing agents with lower Tm and activation energy, higher pre-exponential factor and more flexible segments are beneficial to the preparation of highly conductive coatings.


2014 ◽  
Vol 986-987 ◽  
pp. 80-83
Author(s):  
Xiao Xue Zhang ◽  
Zhen Feng Wang ◽  
Cui Hua Li ◽  
Jian Hong Liu ◽  
Qian Ling Zhang

N-methyl-N-allylpyrrolidinium bis (trifluoromethanesulfonyl) imide (PYR1ATFSI) with substantial supercooling behavior is synthesized to develop low temperature electrolyte for lithium-ion batteries. Additive fluoroethylene carbonate (FEC) in LiTFSI/PYR1ATFSI/EC/PC/EMC is found that it can reduce the freezing point. LiFePO4/Li coin cells with the FEC-PYR1ATFSI electrolyte exhibit good capacity retention, reversible cycling behavior at low temperatures. The good performance can be attributed to the decrease in the freezing point and the polarization of the composite electrolyte.


Sign in / Sign up

Export Citation Format

Share Document