Finite-Element Modeling and Model Verification of Steel W-Beam Guardrails Subject to Pendulum Impact Loading

1998 ◽  
Vol 1647 (1) ◽  
pp. 147-157
Author(s):  
T. Russell Gentry ◽  
Lawrence C. Bank

The experimental and simulated response of steel W-beam guards to pendulum impact loading for impact velocities of 20 km/h, 30 km/h, and 35 km/h are presented. The guardrails were supported by four posts and cable-anchored at each end to ensure that the full tension capacity of the rail could be developed. Experiments carried out with a 912-kg impact pendulum are compared with LS-DYNA finite-element simulations of the impact events. Pendulum tests were completed at the Turner Fairbank Highway Research Center of the Federal Highway Administration. Acceleration, velocity, and displacement time histories are compared for the pendulum impact test and the LS-DYNA simulations. Comparison of the experimental and simulation acceleration records is made using the Numerical Analysis of Roadside Design time-domain statistics. The comparative statistics show that the simulations are in good agreement with the experiments. Guardrail tension data and cable tension data are presented from the LS-DYNA simulations. Results show that the guardrail was close to its tension yield point when impacted an initial velocity of 35 km/h.

2013 ◽  
Vol 351-352 ◽  
pp. 386-391
Author(s):  
Lu Ning Shi ◽  
Hao Xiang He ◽  
Wei Ming Yan ◽  
Yan Jiang Chen ◽  
Da Zhang

Established the three spans prestressed continuous beam dynamic equation, obtained analytical expression of frequency equation. To solve the frequency equation for natural frequency, and compared with the finite element numerical analysis results, the frequency both with analytical expression and with finite element are in good agreement. The formula can be obtained accurately the dynamic parameters of three spans prestressed continuous beam such as frequency. At the same time, the paper also studied the natural frequency sensitivity analysis of three spans prestressed continuous beam, and focuses on the impact on the frequency with effective prestress and prestressed eccentricity.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Lian Song ◽  
Hao Hu ◽  
Jian He ◽  
Xu Chen ◽  
Xi Tu

The progressive collapse of a concrete-filled steel tubular (CFST) frame structure is studied subjected to impact loading of vehicle by the finite-element software ABAQUS, in the direct simulation method (DS) and alternate path method (AP), respectively. Firstly, a total of 14 reference specimens including 8 hollow steel tubes and 6 CFST specimens were numerically simulated under transverse impact loading for verification of finite-element models, which were compared with the existing test results, confirming the overall similarity between them. Secondly, a finite-element analysis (FEA) model is established to predict the impact behaviour of a five-storey and three-span composite frame which was composed of CFST columns and steel beams under impact vehicle loading. The failure mode, internal force-time curve, displacement-time curve, and mechanical performance of the CFST frame were obtained through analyzing. Finally, it is concluded that the result by the DS method is closer to the actual condition and the collapse process of the structure under impact load can be relatively accurately described; however, the AP method is not.


2004 ◽  
Vol 1 (1) ◽  
pp. 59 ◽  
Author(s):  
A. A.N. Aljawi

Deformation and failure of thin plates of mild steel were studied under quasi-static and dynamic impact loadings. Particular emphasis was placed on responses of simply supported circular plates subjected to centric orthogonal loadings. The latter comprised loadings due to relatively massive rigid cylindrical strikers with a hemispherical-end as well as a flat-end. The projectile motions featured variable and low impact velocities. Generally, good agreement was found between experimental results and those predicted by finite-element techniques for displacement-time curves and for force histories of the striker. It was concluded that the ABAQUS-based study (both the implicit and the explicit versions) revealed beneficial insights into the impact mechanics of plates by rigid projectiles. 


2014 ◽  
Vol 1051 ◽  
pp. 857-861
Author(s):  
Bin Tian ◽  
Da Wei Liu ◽  
Long Long Zhu

In order to study the impact resistance capability of dump truck bodies floor, a simulation model of dump truck bodies floor and impact hammerheads made of metal materials were designed, and a strain test system of bodies floor under impact loading was established, a measurement of the stress of bodies floor model was made to obtain the law of stress variation about key point of truck bodies floor model. The research laid the foundation for the analysis of impact resistance capability of dump truck bodies floor using finite element method as well as provided a reference for the structural optimization of truck bodies floor.


Author(s):  
Adrian Constantinescu ◽  
Alain Neme ◽  
Nicolas Jacques ◽  
Philippe Rigo

This paper presents a numerical and experimental study of fluid structure interaction during the impact of a solid body on a water surface. The main request is the modeling of the slamming forces acting on the ship structure in severe sea conditions. The numerical work uses the finite element modeling of a structure impact with free water surface. The first analysis use the commercial finite element code ABAQUS/Standard and combines the assumption of small displacements for the ideal fluid and the solid with an asymptotic formulation for accurate pressure evaluation on the boundary of the wet surface. For deformable strickers, two methods are developed. The first method employs a weak fluid-structure coupling. The second method, more accurate, uses an implicit fluid-structure coupling using a convergence criterion. The second analysis is represented by the simulations of slamming with ABAQUS/Explicit. The simulation uses a viscous, compressible fluid and a soft-exponential law to manage the contact between fluid and solid. The results in term of pressure and total effort applied to the rigid structure are in good agreement with first numerical results and especially with the FLUENT CFD. In order to validate the numerical methods, slamming experimental tests were carried out with a new hydraulic shock press at the ENSIETA laboratory.


2017 ◽  
Vol 27 (7) ◽  
pp. 1058-1083 ◽  
Author(s):  
Liu Jin ◽  
Renbo Zhang ◽  
Guoqin Dou ◽  
Jiandong Xu ◽  
Xiuli Du

As a kind of impact resistant material, steel fiber reinforced concrete (SFRC) has a good ductility and energy dissipation capacity by improving the tensile strength and impact toughness. To explore the dynamic mechanical behavior of SFRC beams subjected to impact loading, 12 simply-supported SFRC beams with different stirrup ratios (0%, 0.253% and 0.502%) and different volume fractions of steel fibers (0%, 1%, 2% and 3%) were tested with free-falling drop-weights impacting at the mid-span of specimens. The failure patterns were observed and videoed, and simultaneously, the time histories of the impact force, the reaction force, and the mid-span deflection were recorded. Moreover, the influences of stirrup ratio and volume fraction of steel fibers on the impact resistant behavior of the SFRC beams were preliminarily analyzed and discussed. The results indicate that the impact resistant performance of SFRC beams, such as crack pattern, ductility, energy consumption capacity, and deformation recovery capacity can be improved by the addition of steel fibers and stirrups. The required static capacity of these beams were calculated based on the analysis of reaction force vs. displacement loop and impact force vs. displacement loop as well as absorbed energy ratio. For further understanding the experimental results, finite element simulation of SFRC beams subjected to impact loading were carried out. The rationality and accuracy of the finite element model was illustrated by the good agreement between the test observations and the numerical results.


Author(s):  
M. R. Brake ◽  
P. L. Reu ◽  
D. J. VanGoethem ◽  
M. V. Bejarano ◽  
A. Sumali

In many engineered structures and components, impact events frequently occur between sub-components. Numerical models are able to adequately capture the salient features of these events; however, with high fidelity finite element models, an unreasonably large number of elements are needed to accurately model just the elastic regime when arbitrary contact is considered. In order to solve real engineering problems with elastic-plastic impacts in complex or built up systems, an analytical expression is needed to make solutions practical. To this end, a series of experiments are designed to test a new elastic plastic model for impact dynamics. A hard metal ball is attached as the end of a pendulum, and is struck against a relatively compliant metal puck. Digital image analysis is used to measure the displacement and velocity of the metal ball across the impact events. Frictional losses in the system are minimized, and the coefficient of restitution is calculated as a function of velocity. These measurements are used to validate an elastic-plastic impact model, which is further compared to and other models from the literature. Good agreement is found between the new analytical model and the experiments.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jingfei Zhang ◽  
Deyong Guo ◽  
Wenhua Wu ◽  
Pan Guo

Based on the general Biot theory of saturated porous media, a modified time-discontinuous Galerkin finite element method (MDGFEM) is presented to simulate the structural dynamics and wave propagation problems of gas-saturated coal subjected to impact loading. Numerical results of one dimension and two dimensions show that the present MDGFEM possesses better abilities and provides much more accurate solutions than the traditional Newmark method and previous DGFEM for the impact problem. It can effectively capture the discontinuities of the wave and filter out the effects of spurious numerical oscillation induced by high-frequency impulsive load. The results can provide a technological basis for the research of the prevention of coal and gas dynamic disasters under deep mining. And the method could be useful for the further numerical research of coal-rock-gas coupling problems and coal-gas-heat coupling problems subjected to impact loading.


Author(s):  
Dean M. Steinke ◽  
Ryan S. Nicoll ◽  
André R. Roy

Remotely operated vehicle (ROV) pilots are frequently trained to operate in increasingly complex subsea environments using ROV simulators. These computer simulators de-risk important subsea operations by increasing ROV pilots’ skill levels in performing tasks under challenging environmental and operational constraints. ROV pilot-training simulation scenarios typically involve a variety of subsea equipment, such as trees, flow lines, pipeline end terminations (PLETs), etc. However, many critical ROV tasks, such as pipeline repair or riser installation, involve flexible structures. The following paper investigates a method for accurately simulating pipelines and flexibles within an ROV pilot-training simulator. The goal of the technology development is to enable engineers and marine operators to assess the risks associated with certain tasks, such as pipeline repair or flexible hook-up, in real-time using ROV simulation technology. In particular, the challenge that this paper will address is how to determine the stresses in a subsea pipeline using a lumped mass finite-element cable model within a multi-body simulation framework. Repair of subsea pipelines is a complex multi-step process typically carried out by ROVs. During pipeline repair, a pipeline repair system (PRS) is lowered to the seabed. The PRS must lift the pipeline off the seabed and the damaged section of pipeline must then be cut and removed, and a new section of pipeline put in place. During the lifting, cutting and installation phases it is important that the pipeline is not overstressed and the equipment used in the repair operation is not overloaded. In addition, there are a wide array of operational variables, procedures and decisions that must be evaluated. Towards this end, an ROV simulation facility capable of assessing stresses and operations in real-time was constructed using the finite element simulation software package ProteusDS in conjunction with GRI Simulations Inc.’s VROV simulator. The system was designed to evaluate the impact of different combinations of operating parameters and is intended to be useful for system design and analysis. The system would be of immense utility in rapid response to a real-world incident where the system may be called into action. The following paper reviews the simulation framework, the models employed, the results of model verification, and discusses the challenges of the project.


2018 ◽  
Vol 28 (2) ◽  
pp. 183-199 ◽  
Author(s):  
HN Dhakal ◽  
H Ghasemnejad ◽  
ZY Zhang ◽  
SO Ismail ◽  
V Arumugam

Flax fibre-reinforced unsaturated polyester composite laminates were fabricated by vacuum bagging process and their impact and post-impact responses were investigated through experimental testing and finite element simulations. Samples of 60 mm × 60 mm × 6.2 mm were cut from the composite laminates and were subjected to a low-velocity impact loading to near perforation using hemispherical steel impactor at three different energy levels, 25, 27 and 29 Joules. Post-impact was employed to obtain full penetration. The impacted composite plates were modelled with various lay-ups using finite element software LS-DYNA (LS-DYNA User’s Manual 1997) to provide a validated finite element model for the future investigation in the field. The effects of impact and post-impact on the failure mechanisms were evaluated using scanning electron microscopy. Parameters measured were load bearing capability, energy absorption and damage modes. The results indicate that both peak load and the energy absorption were reduced significantly after the post-impact events. Consequently, it was observed from the visual images of the damages sites that the extent of damage increased with increased incident energy and post-impact events.


Sign in / Sign up

Export Citation Format

Share Document