scholarly journals IS THERE AN ORGAN-SPECIFIC EXPRESSION OF CANDIDATE GENES (DJ1, PINK1) IN TISSUES OF THE ORGANISM UNDER EXPERIMENTAL PARKINSONISM AND ITS PATHOGENETIC THERAPY?

Author(s):  
Rozova Kateryna Vsevolodovna ◽  
Putiy Yuliya Vladimirovna

It have been studied  the changes in the structural and functional state of mitochondria and expression of PINK1 and DJ1 genes in brain tissue - medulla oblongata and striatum and lung and heart tissue in experimental parkinsonism and its pathogenetic treatment with the help of a broad-spectrum antihypoxant Kapikor. It was shown that undrt experimental parkinsonism, in addition to damage to the ultrastructure of the mitochondrial apparatus in cells of body tissues, there are significant changes in mRNA expression of DJ1 and PINK1 genes, which are associated with the formation of mitochondrial dysfunction. They have a multidirectional character in the tissues of the brain - decrease, and in the tissues of the heart and lungs - increase. The degree of such changes in expression is organ-specific and more pronounced in the tissues of the visceral organs than in the tissues of the brain. Also, it was shown that the use of broad-spectrum antioxidant, which contains mildenium dehydrate and gamma-butyrobetaine dihydrate, there are significant changes in the expression of mRNA genes DJ1 and PINK1, which are also organ-specific - the expression of mRNA of all DJ1 genes increased in to a greater extent, the expression of PINK1 gene mRNA decreased sharply in brain tissues, and also increased sharply in lung and heart tissues. The data obtained indicate a complex and ambiguous relationship between the level of expression of the studied candidate genes involved in the formation of experimental parkinsonism, and the severity of mitochondrial dysfunction, which is one of the pathogenetic causes of parkinsonism.

2019 ◽  
Vol 20 (18) ◽  
pp. 4593 ◽  
Author(s):  
Hong Chen ◽  
Huihui Li ◽  
Xiaoqing Lu ◽  
Longzheng Chen ◽  
Jing Liu ◽  
...  

The cultivated strawberry (Fragaria × ananassa), an allo-octoploid with non-climacteric fleshy fruits, is a popular Rosaceae horticultural crop worldwide that is mainly propagated via stolons during cultivation. Woodland strawberry (Fragaria vesca), one of the four diploid progenitor species of cultivated strawberry, is widely used as a model plant in the study of Rosaceae fruit trees, non-climacteric fruits and stolons. One GRAS transcription factor has been shown to regulate stolon formation; the other GRAS proteins in woodland strawberry remain unknown. In this study, we identified 54 FveGRAS proteins in woodland strawberry, and divided them into 14 subfamilies. Conserved motif analysis revealed that the motif composition of FveGRAS proteins was conserved within each subfamily, but diverged widely among subfamilies. We found 56 orthologous pairs of GRAS proteins between woodland strawberry and Arabidopsis thaliana, 47 orthologous pairs between woodland strawberry and rice and 92 paralogous pairs within woodland strawberry. The expression patterns of FveGRAS genes in various organs and tissues, and changes therein under cold, heat and GA3 treatments, were characterized using transcriptomic analysis. The results showed that 34 FveGRAS genes were expressed with different degrees in at least four organs, including stolons; only a few genes displayed organ-specific expression. The expression levels of 16 genes decreased, while that of four genes increased during fruit ripening; FveGRAS54 showed the largest increase in expression. Under cold, heat and GA3 treatments, around half of the FveGRAS genes displayed increased or decreased expression to some extent, suggesting differing functions of these FveGRAS genes in the responses to cold, heat and GAs. This study provides insight into the potential functions of FveGRAS genes in woodland strawberry. A few FveGRAS genes were identified as candidate genes for further study, in terms of their functions in stolon formation, fruit ripening and abiotic stresses.


2021 ◽  
Vol 22 (15) ◽  
pp. 8325
Author(s):  
Paola Zanfardino ◽  
Stefano Doccini ◽  
Filippo M. Santorelli ◽  
Vittoria Petruzzella

Oxidative phosphorylation (OxPhos) is the basic function of mitochondria, although the landscape of mitochondrial functions is continuously growing to include more aspects of cellular homeostasis. Thanks to the application of -omics technologies to the study of the OxPhos system, novel features emerge from the cataloging of novel proteins as mitochondrial thus adding details to the mitochondrial proteome and defining novel metabolic cellular interrelations, especially in the human brain. We focussed on the diversity of bioenergetics demand and different aspects of mitochondrial structure, functions, and dysfunction in the brain. Definition such as ‘mitoexome’, ‘mitoproteome’ and ‘mitointeractome’ have entered the field of ‘mitochondrial medicine’. In this context, we reviewed several genetic defects that hamper the last step of aerobic metabolism, mostly involving the nervous tissue as one of the most prominent energy-dependent tissues and, as consequence, as a primary target of mitochondrial dysfunction. The dual genetic origin of the OxPhos complexes is one of the reasons for the complexity of the genotype-phenotype correlation when facing human diseases associated with mitochondrial defects. Such complexity clinically manifests with extremely heterogeneous symptoms, ranging from organ-specific to multisystemic dysfunction with different clinical courses. Finally, we briefly discuss the future directions of the multi-omics study of human brain disorders.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 229
Author(s):  
JunHyuk Woo ◽  
Hyesun Cho ◽  
YunHee Seol ◽  
Soon Ho Kim ◽  
Chanhyeok Park ◽  
...  

The brain needs more energy than other organs in the body. Mitochondria are the generator of vital power in the living organism. Not only do mitochondria sense signals from the outside of a cell, but they also orchestrate the cascade of subcellular events by supplying adenosine-5′-triphosphate (ATP), the biochemical energy. It is known that impaired mitochondrial function and oxidative stress contribute or lead to neuronal damage and degeneration of the brain. This mini-review focuses on addressing how mitochondrial dysfunction and oxidative stress are associated with the pathogenesis of neurodegenerative disorders including Alzheimer’s disease, amyotrophic lateral sclerosis, Huntington’s disease, and Parkinson’s disease. In addition, we discuss state-of-the-art computational models of mitochondrial functions in relation to oxidative stress and neurodegeneration. Together, a better understanding of brain disease-specific mitochondrial dysfunction and oxidative stress can pave the way to developing antioxidant therapeutic strategies to ameliorate neuronal activity and prevent neurodegeneration.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Alexandros Nicolaou ◽  
Kristina Sass ◽  
Bernd H Northoff ◽  
Daniel Teupser ◽  
Lesca M Holdt

Quantitative trait locus (QTL) mapping in an F2 intercross (n=452) of atherosclerosis-susceptible C57BL/6 (B6) and atherosclerosis-resistant FVB mice on the LDL-receptor deficient background revealed a novel atherosclerosis susceptibility locus on mouse chromosome (Chr) 3. In previous work the susceptible genetic region on Chr3 was narrowed to 80 - 160 MB and validated by congenic FVB.Chr3 B6/B6 mice. We hypothesized that underlying genetic variation in this region leads to differential expression of causal genes, thereby affecting atherosclerosis susceptibility. We performed transcriptome-wide expression analyses in livers of congenic FVB.Chr3 B6/B6 and FVB mice (n=4/4) using Illumina Ref-8 arrays followed by validation in livers of congenic FVB.Chr3 B6/B6 and FVB mice (n=8/9) as well as in livers of B6 and FVB mice (n=5/5) by quantitative real-time PCR (qRT-PCR). C is -regulation was investigated in F2 livers (n=47) by correlating the expression to the genotype. Tissue-specific expression of genes was examined by qRT-PCR in parental B6 and FVB mice. Western blot analysis and immunohistochemical staining (IHC) were performed. Mechanisms of atherogenesis were investigated by RNAi. Pla2g12a and Elovl6 were identified as candidate genes co-segregating with the atherosclerosis QTL at marker rs13464244. Pla2g12a mRNA expression was inversely correlated (r 2 =0.2, p=0.002) with atherosclerotic lesion size in F2 mice while Elovl6 expression was positively correlated (r 2 =0.18, p=0.002). qRT-PCR revealed a strong expression of Pla2g12a in muscle and fat tissues whereas Elovl6 was highly expressed in liver and fat tissues. Western blot analysis revealed significantly decreased protein expression of Pla2g12a in livers of B6 compared to FVB and an increased expression of Elovl6 in B6 mice. IHC staining of Pla2g12a and Elovl6 in aortic roots indicated high expression in macrophages and predominantly in endothelial cells. siRNA knockdown of Elovl6 was associated with reduced adhesion and increased apoptosis. In conclusion, we identified Elovl6 and Pla2g12a as promising candidate genes of atherosclerosis susceptibility on mouse Chr3. Further work is necessary to better understand the influence of these two genes on atherosclerosis development.


2014 ◽  
Vol 13 (8) ◽  
pp. 3596-3606 ◽  
Author(s):  
Cecilia Lindskog ◽  
Martin Kuhlwilm ◽  
Armaity Davierwala ◽  
Ning Fu ◽  
Geeta Hegde ◽  
...  

1993 ◽  
Vol 264 (4) ◽  
pp. C995-C1002 ◽  
Author(s):  
W. T. Monacci ◽  
M. J. Merrill ◽  
E. H. Oldfield

Vascular permeability factor (VPF)/vascular endothelial growth factor (VEGF) is a approximately 43-kDa secreted protein that has been shown in bioassays to induce endothelial proliferation, angiogenesis, and capillary hyperpermeability. VPF has been suggested to play an important role in the physiology of normal vasculature. To further elucidate the natural functions of VPF in vivo, the expression of VPF in normal tissues was examined using Northern blot analysis and in situ hybridization histochemistry. VPF mRNA is expressed in the brain, kidney, liver, lung, and spleen of the healthy adult rat. On Northern blots, the relative abundance of VPF mRNA observed in these tissues was highest in the lung and lowest in the spleen. As determined by in situ hybridization, the patterns of VPF expression are organ specific. Hybridization of an antisense VPF probe was concentrated in the cerebellar granule cell layer of the brain and in the glomeruli and tubules of the kidney. In the liver and lung, intense hybridization was observed homogeneously throughout both tissues, demonstrating that VPF mRNA is present in virtually every hepatocyte and pulmonary alveolar cell. Hybridization to the spleen was weaker and more diffuse. The widespread expression and organ-specific distribution of VPF mRNA in normal rat tissues supports the suggestion of an extensive role for this factor in the physiology of normal vasculature.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Martina Reutzel ◽  
Rekha Grewal ◽  
Carmina Silaidos ◽  
Jens Zotzel ◽  
Stefan Marx ◽  
...  

Aging represents a major risk factor for developing neurodegenerative diseases such as Alzheimer’s disease (AD). As components of the Mediterranean diet, olive polyphenols may play a crucial role in the prevention of AD. Since mitochondrial dysfunction acts as a final pathway in both brain aging and AD, respectively, the effects of a mixture of highly purified olive secoiridoids were tested on cognition and ATP levels in a commonly used mouse model for brain aging. Over 6 months, female NMRI mice (12 months of age) were fed with a blend containing highly purified olive secoiridoids (POS) including oleuropein, hydroxytyrosol and oleurosid standardized for 50 mg oleuropein/kg diet (equivalent to 13.75 mg POS/kg b.w.) or the study diet without POS as control. Mice aged 3 months served as young controls. Behavioral tests showed deficits in cognition in aged mice. Levels of ATP and mRNA levels of NADH-reductase, cytochrome-c-oxidase, and citrate synthase were significantly reduced in the brains of aged mice indicating mitochondrial dysfunction. Moreover, gene expression of Sirt1, CREB, Gap43, and GPx-1 was significantly reduced in the brain tissue of aged mice. POS-fed mice showed improved spatial working memory. Furthermore, POS restored brain ATP levels in aged mice which were significantly increased. Our results show that a diet rich in purified olive polyphenols has positive long-term effects on cognition and energy metabolism in the brain of aged mice.


Sign in / Sign up

Export Citation Format

Share Document