scholarly journals Evaluation of water resources changes of the Mountain Dniester in 20th century following the RCP8.5 scenario and based on the “climate-runoff” model

Author(s):  
N. S. Loboda ◽  
M. O. Kozlov ◽  
І. V. Katynska

The relevance of the research consists in the need for evaluating the water resources changes of the Dniester due to global warming. The mountain part of the Dniester Basin is a zone of the river's runoff formation that determines its water content. The subject of research includes a process of climate changes and their impact on the water resources of the Mountain Dniester’s catchments. The research focuses on determining the water resources changes under current and possible future climatic conditions represented by climatic scenarios. The research aims at evaluating the water resources changes of the mountain part of the Dniester’s catchment area at the present and in the future by the mid-21 st century (2021-2050) based on the “climate-runoff” model using meteorological observations data (up to 2018 inclusive) and scenario data (averaged data based on 14 mathematical models of the CORDEX project, RCP8.5 scenario). During the research the resources of humidification, heat (heat equivalent) and water content for modern (1989-2018) and scenario (RCP8.5, 2021-2050) climatic conditions based on application of the "climate-runoff" model were evaluated. The theoretical basis for estimating the natural (undisturbed by water management) annual runoff in this model is represented by the water-heat balance equation. The meteorological characteristics (average monthly air temperatures and precipitation) serve as input data. The runoff calculated using the water-heat balance equation is called a climatic runoff. One of the peculiarities of the research consists in the use of the vertical zoning law with respect to distribution of runoff and climatic factors of its formation. During the comparative analysis the dependence of annual runoff norms on height of the Mountain Dniester’s terrain specified in modern regulatory documents served as a basic dependence. Such dependence reflects an altitude-dependant distribution of runoff for the climatic conditions that preceded the significant impact of global warming on air temperature (until 1989). The analysis of the dependences of average long-term values of the annual runoff depending on the terrain altitude showed that the runoff changes for two studied periods (before and after 1989) are within ±12,3%. The analysis of the graphs of chronological course of annual water flow of the mountain tributaries of the Dniester made it possible to confirm the absence of statistically significant trends in their fluctuations. According to the RCP8.5 climate scenario over the period of 2021-2050 and following the results of calculations based on the “climate-runoff” model, the dependences of the average long-term altitude-related values of climatic factors and climatic runoff were retrieved. It was found that the effects of global warming decrease with increasing altitude. In the foothills (up to 200 m) the annual precipitation decreases (up to 11%), the maximum possible evaporation increases (up to 17%) and water resources decrease (up to 46%). Heat resources cease to increase and water resources cease to reduce at the altitudes over 800 m. The average deviation of the scenario and baseline values for precipitation over the estimated period will amount to 2.41% for precipitation, 5.79% for maximum possible evaporation and 8.87% for water resources. Thus, reduction of water resources in the mountainous part of the Dniester by the mid-21 st century will be insignificant. When evaluating the current state of water resources of the Mountain Dniester no significant changes were discovered, thereby not contradicting the other authors’ data.

2021 ◽  
pp. 41-48
Author(s):  
Halina A. Kamyshenka

The results of a statistical assessment of the influence of changing weather and climatic conditions of the territory of Belarus on the productivity of the main winter cereal crops are presented in order to build computational models of productivity. The calculations were made with respect to the climatic component as a predictor, taking into account the deviations of air temperature and precipitation from the long-term climatic norm of months that have the most significant effect on the yield of the studied crops. For winter rye and wheat, adequate models of yield variability have been built. The research results are relevant for solving forecasting problems.


2021 ◽  
Author(s):  
Hanna Bolbot ◽  
Vasyl Grebin

<p>The current patterns estimation of the water regime under climate change is one of the most urgent tasks in Ukraine and the world. Such changes are determined by fluctuations in the main climatic characteristics - precipitation and air temperature, which are defined the value of evaporation. These parameters influence on the annual runoff distribution and long-term runoff fluctuations. In particular, the annual precipitation redistribution is reflected in the corresponding changes in the river runoff.<br>The assessment of the current state and nature of changes in precipitation and river runoff of the Siverskyi Donets River Basin was made by comparing the current period (1991-2018) with the period of the climatological normal (1961-1990).<br>In general, for this area, it was defined the close relationship between the amount of precipitation and the annual runoff. Against the background of insignificant (about 1%) increase of annual precipitation in recent decades, it was revealed their redistribution by seasons and separate months. There is a decrease in precipitation in the cold period (November-February). This causes (along with other factors) a decrease in the amount of snow and, accordingly, the spring flood runoff. There are frequent cases of unexpressed spring floods of the Siverskyi Donets River Basin. The runoff during March-April (the period of spring flood within the Ukrainian part of the basin) decreased by almost a third.<br>The increase of precipitation during May-June causes a corresponding (insignificant) increase in runoff in these months. The shift of the maximum monthly amount of precipitation from May (for the period 1961-1990) to June (in the current period) is observed.<br>There is a certain threat to water supply in the region due to the shift in the minimum monthly amount of precipitation in the warm period from October to August. Compared with October, there is a higher air temperature and, accordingly, higher evaporation in August, which reduces the runoff. Such a situation is solved by rational water resources management of the basin. The possibility of replenishing water resources in the basin through the transfer runoff from the Dnieper (Dnieper-Siverskyi Donets channel) and the annual runoff redistribution in the reservoir system causes some increase in the river runoff of summer months in recent decades. This is also contributed by the activities of the river basin management structures, which control the maintenance water users' of minimum ecological flow downstream the water intakes and hydraulic structures in the rivers of the basin.<br>Therefore, in the period of current climate change, the annual runoff distribution of the Siverskyi Donets River Basin has undergone significant changes, which is related to the annual precipitation redistribution and anthropogenic load on the basin.</p>


2017 ◽  
Vol 18 (10) ◽  
pp. 2745-2759 ◽  
Author(s):  
Zhenwei Li ◽  
Xianli Xu ◽  
Chaohao Xu ◽  
Meixian Liu ◽  
Kelin Wang ◽  
...  

Abstract Karst landforms cover 7%–12% of the Earth’s continental area and provide water resources for 25% of the global population. Climate, particularly frequent climate extremes, may greatly affect the annual runoff, especially in climate-sensitive regions such as a karst area of southwest China. Knowledge of the linkage between climate and runoff is urgently needed for smart water resources management. This study therefore selected five catchments that have different carbonized rock coverage (from 11% to 64%) to detect the dominant climatic variables driving changes in annual runoff for the period of 1957–2011 in southwest China. Because climatic variables are highly codependent, a partial least squares regression (PLSR) was used to elucidate the linkages between runoff and 17 climatic variables. Results indicated that the dominant climatic factors driving annual runoff are annual total precipitation, rainy days, heavy precipitation amount, heavy precipitation days, rainstorm amount, and rainstorm days. These six factors are generally used to represent extreme climatic events, and hence it may demonstrate that annual runoff is highly linked to precipitation extremes in this region. The PLSR approach presented in this study is beneficial and novel, as it enables the elimination of codependency among the variables and facilitates a more unbiased view of the contribution of the changes in climatic variables to the changes in runoff. As a practical and simple tool, the PLSR approach is thus recommended for application to a variety of other catchments.


2008 ◽  
Vol 12 (1) ◽  
pp. 239-255 ◽  
Author(s):  
E. McBean ◽  
H. Motiee

Abstract. In the threshold of the appearance of global warming from theory to reality, extensive research has focused on predicting the impact of potential climate change on water resources using results from Global Circulation Models (GCMs). This research carries this further by statistical analyses of long term meteorological and hydrological data. Seventy years of historical trends in precipitation, temperature, and streamflows in the Great Lakes of North America are developed using long term regression analyses and Mann-Kendall statistics. The results generated by the two statistical procedures are in agreement and demonstrate that many of these variables are experiencing statistically significant increases over a seven-decade period. The trend lines of streamflows in the three rivers of St. Clair, Niagara and St. Lawrence, and precipitation levels over four of the five Great Lakes, show statistically significant increases in flows and precipitation. Further, precipitation rates as predicted using fitted regression lines are compared with scenarios from GCMs and demonstrate similar forecast predictions for Lake Superior. Trend projections from historical data are higher than GCM predictions for Lakes Michigan/Huron. Significant variability in predictions, as developed from alternative GCMs, is noted. Given the general agreement as derived from very different procedures, predictions extrapolated from historical trends and from GCMs, there is evidence that hydrologic changes particularly for the precipitation in the Great Lakes Basin may be demonstrating influences arising from global warming and climate change.


Author(s):  
N.V. Danilova

The signals of global warming are now being observed throughout the world. Data of hydrometeorological centres show a significant increase of temperature in many regions accompanied by intense frequency of dry periods. Some substantial and direct effects of climate change may be already noticed at present time. Over the next several decades they will be observed in agriculture. Increase of temperature and reduction of precipitation volumes will probably lead to decrease the level of yield. These changes can significantly affect the global food security. Ukraine is known for its fertile soil and agricultural products, so it has a huge agricultural potential, contributing, in fact, to the global food security. However, the observed weather changes, increase of average temperature and uneven distribution of rainfalls can result in sharp transformation of most of agricultural and climatic zones of Ukraine. According to international processes there is an urgent need for improvement of adaptation to climate change of some branches of national economy of Ukraine, including of agriculture. Expanding the range of types of millet used in agricultural production is an economically feasible process that should be implemented in view of significant climate changes resulting in global warming which is widely discussed in scientific literature. Rapid introduction in crop shifts of the millet that is able to withstand recurring periodic droughts, especially in the southern regions, is one of the ways allowing to overcome the consequences of such extreme conditions. Conditions of the southern regions are favourable for millet crop. Millet is one of the most drought-resistant and heat-resistant crops that can sustain heat injuries and seizures and this is very important for arid areas during dry years, when other crops significantly reduce the level of yield. We studied changes of agro-climatic resources and agro-climatic conditions for formation of millet productivity for various periods of time. The analysis of climate change trend was performed through comparing of data as per climatic scenarios A2 and A1B and of average long-term characteristics of climatic and agro-climatic indicators. The comparative description of millet productivity under the conditions of climate change as per average long-term data (1986-2005) and as per scenarios A2 and A1B of climate change (2011-2030 and 2031-2050) was also performed.


Author(s):  
N. S. Loboda ◽  
А. M. Kuza ◽  
О. M. Kozlov

Relevance of the paper consists in the need of ability to predict the water resources state of small and medium-sized rivers of the North-Western Black Sea Region in the 21st century in order to justify the strategy of Odesa Region's economy development. The water bodies of the studied territory include Kuyalnitskyi Liman with its unique balneological properties used for health improvement purposes since the end of the 19th century. Global warming and construction of numerous artificial reservoirs across the catchments of the liman's rivers resulted in its shallowing since the 90s of the last century. Forecasts for possible inflow of fresh water from the rivers to the liman in the near future have a great importance for assessing the prospects of its natural resources protection and preservation. The aim of the paper is to determine a possible state of water resources of the rivers belonging to the Kuyalnitskyi Liman catchment over the period of 2021-2050 based on imitational mathematical modelling with the climate-runoff model taken as a template and using meteorological data of 14 models of the RCP4.5 climate scenario. Estimations of zonal (climatic) annual runoff were provided for six meteorological stations located across the Kuyalnitskyi Liman catchment and adjacent territories. Each of the studied models has the water resources, heat and moisture resources estimations averaged over the target territory. It is shown that, compared to the last century's data, water resources changes will range from -82.6 % (model CLMcom3) to + 75.4 % (model MPI-CSC2). An average statistical model which is the result of averaging all the studied models was taken for further calculations. It was established that the best harmonization of estimated and actual tendencies of runoff formation climatic factors changes is observed when the average statistical model is taken. According to this model, over the period of 2021-2050 the Kuyalnitskyi Liman catchment area will see a heat resources expected increase by + 12.3 % with a slight (-1.80 %) humidification resources decrease. This will lead to reduction of territory's water resources by 25.5 %. The transfer of some watercourses feeding the liman to natural annual river runoff made it possible to determine that, according to the RCP4.5 scenario, over the period of 2021-2050 the average long-term inflow of fresh water from the Velykyi Kuyalnik River will constitute 16.5 million m3 and the inflow from other watercourses – 1.3 million m3.


2020 ◽  
Vol 92 (1) ◽  
pp. 41-54
Author(s):  
Adam Choiński ◽  
Jerzy Jańczak ◽  
Ptak Mariusz

Water-level fluctuations are among the primary factors determining the functioning of lakes. The volume to which lake basins are filled with water is of major importance to the courses of many processes and phenomena. A particular amount of water in a lake, and water-table stability, are also important from the point of view of human activity, as these elements help determine the quantity and accessibility of the water resources lakes have to offer, and therefore the possibilities for them to be used by different branches of the economy, e.g. industry, agriculture or tourism. The work detailed here is thus a presentation of trends as regards water-level fluctuations in 16 lakes in Poland, over the period 1956–2015. The study results, obtained for the first time in relation to such a long time scale and extending to around a dozen lakes, aim to point to the scale and direction of water-level fluctuations in times of the intensive transformation of the natural environment. They were obtained by reference to water-level observations made by the Institute of Meteorology and Water Management – National Research Institute (IMiGW-PIB). Specifically, data referring to the (November-October) hydrological year were analysed for trends as regards mean annual water levels using the Mann-Kendall test. Results point to major variability in the courses noted for these levels over the analysed multiannual period. Nevertheless, three overall situations could be designated from within the group of cases analysed, i.e. increase, decrease or lack of a trend. The first group includes Lakes Sławskie, Jamno, Łebsko, Nidzkie, and Studzieniczne (where increases were statistically significant at p=0.05); the second, Lakes Ostrzyckie and Ełckie (decreases significant at p=0.05); and the last group all remaining lakes, i.e. Charzykowskie, Jeziorak and Rajgrodzkie, Biskupińskie, Drwęckie and Białe, Gopło, Roś, and Wigry. It was, however, noted that in many cases analysed periods of alternating increase and decrease in water level were to be observed. The causes of such fluctuations were complex, but inter alia reflected droughts of several years’ duration, periods featuring higher-than-average precipitation, and local conditions. In general, water-level fluctuations in lakes result from natural and anthropogenic factors determining the hydrological conditions in catchments. And in the context of the lakes considered here, the courses of water-level fluctuations were mostly a reflection of local, rather than wider climatic conditions – a fact i.a. illustrated by the lack of cohesive regional designations. The situation is different from that of, for example, the thermal or ice regimes of Polish lakes, in relation to which observed similarities in properties are seen to be determined mainly by climatic factors. Information of this kind may be of key importance to the (quantitative and qualitative) management of water resources in the context of the climate change being observed currently.


Agriculture ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 197 ◽  
Author(s):  
Befekadu Chemere ◽  
Jiyung Kim ◽  
Baehun Lee ◽  
Moonju Kim ◽  
Byongwan Kim ◽  
...  

Despite the gradual increase in livestock feed demands, the supply faces enormous challenges due to extreme climatic conditions. As the presence of these climatic condition has the potential to affect the yield of sorghum-sudangrass hybrid (SSH), understanding the yield variation in relation to the climatic conditions provides the ability to come up with proper mitigation strategies. This study was designed to detect the effect of climatic factors on the long-term dry matter yield (DMY) trend of SSH using time series analysis in the Republic of Korea. The collected data consisted of DMY, seeding-harvesting dates, the location where the cultivation took place, cultivars, and climatic factors related to cultivation of SSH. Based on the assumption of normality, the final data set (n = 420) was generated after outliers had been removed using Box-plot analysis. To evaluate the seasonality of DMY, an augmented Dickey Fuller (ADF) test and a correlogram of Autocorrelation Function (ACF) were used. Prior to detecting the effect of climatic factors on the DMY trend, the Autoregressive Integrated Moving Average (ARIMA) model was fitted to non-seasonal DMY series, and ARIMA (2, 1, 1) was found to be the optimal model to describe the long-term DMY trend of SSH. ARIMA with climatic factors (ARIMAX) detected significance (p < 0.05) of Seeding-Harvesting Precipitation Amount (SHPA) and Seeding-Harvesting Accumulated Temperature (SHAMT) on DMY trend. This does not mean that the average temperature and duration of exposure to sunshine do not affect the growth and development of SSH. The result underlines the impact of the precipitation model as a major factor for the seasonality of long-term DMY of SSH in the Republic of Korea.


Author(s):  
N.S. Loboda ◽  
◽  
Y.V. Bozhok ◽  

The results of calculations of possible state of water resources within The Danube River in the XXI century were shown. This estimation was based on the model «climate-runoff», developed in Odessa State Environmental University. As the input to model data of climate scenario A1B (model REMO) were used. Average long-term annual flow values using meteorological data (air temperature and precipitation) from the scenario for different climatic periods of XXI century were calculated. 32 points (grid nodes) which were uniformly distributed over the catchment area of The Danube River were studied. Projection of changes in water resources was given by comparing the calculation results in the past (before 1989) and in the future (1990-2030, 2031-2070, 2071-2100). The major trends in climatic factors of the flow formation and water resources were established. It is shown that the climatic conditions in the XXI century on the Danube River catchment is unfavorable for the formation of runoff. The positive component of the water balance (precipitation) remains unchanged and the negative component (evaporation) increases. Isolines of norms of climatic annual flow within the whole basin were constructed. It is established that by 2030 a significant reduction of water resources will not occur; during the 2031-2070 diminution will be 17,9%; during the 2071-2100 – 22,0%. Thus, in the XXI century, changes in the water resources of the Danube will not be destructive and irreversible.


Author(s):  
Gennady V. Menzhulin ◽  
Sergey P. Savvateyev

The climate of a region is a representation of long-term weather conditions that prevail there. Over the millions of years of the existence of the atmosphere on the earth, the climate has changed all the time; ice ages have come and gone, and this has been the result of natural causes. Recently (on geological time scales) the human population has expanded—from half a billion in 1600, to 1 billion in 1800, to almost 3 billion in 1940, and it now stands at about 6 billion. The climate may well now be influenced not only as before by natural events but also by human activities. For example, we are producing vast amounts of carbon dioxide by burning fossil fuels, and this is causing the temperature of the earth to rise significantly. If we argue that we should control our activities to preserve this planet as a habitable environment for future generations, we need to have some scientific knowledge of the effects of our present activities on climate. In recent years the evidence has been accumulating that on the time scale of decades there is global warming (i.e., the global annual mean surface temperature is increasing). There is also evidence accumulating that part of this increase is a consequence of human activities. The evidence is largely statistical. Within this trend there are bound to be temporal fluctuations and spatial variations. Moreover, in addition to the increase in temperature, it is reasonable to assume that there is, overall, an increase in evaporation of water from the surface of the earth and that there will be a consequent increase in precipitation. But within this overall scenario there are bound to be local variations; some areas may experience more precipitation, but some areas may experience less precipitation. The effect of climate change on the proneness to drought is therefore not uniform but can be expected to vary from place to place. Therefore, whether one is concerned with considering the relation between climate and proneness to drought from the historical evidence or whether one is trying to use models to predict the effect of future climatic conditions, it is necessary to consider the local spatial variations.


Sign in / Sign up

Export Citation Format

Share Document