scholarly journals THE IMPACT OF THE ALEXANDERWERK WP120 MILL UPPER MESH SIZE ON THE GRANULE PROPERTIES OF ALACTOSE/MICROCRYSTALLINE CELLULOSE PLACEBO FORMULATION

2018 ◽  
Vol 11 (2) ◽  
pp. 460-464
Author(s):  
Karim Hassan ◽  
Marwan ElBagoury ◽  
Maryam Kotb
2020 ◽  
Vol 3 (3) ◽  
Author(s):  
Alfan Ekajati Latief ◽  
Nuha Desi Anggraeni ◽  
Dedy Hernady

ABSTRAK Serat alam yang berfungsi sebagai penguat memiliki sifat yang lebih ringan, mudah dibentuk, tahan korosi, harga murah dan memiliki kekuatan yang sama dengan material logam. Serat bahan alami yang memiliki kekuatan tarik, tekan dan impak yang baik diantaranya serat rami dan daun nanas. Untuk matriks Polipropilena high impact (PPHI) yang banyak digunakan dalam industri otomotif.. Pada penelitian ini dipelajari pengaruh fraksi volume serat alami terhadap sifat mekanik komposit PPHI berpenguat serat alami. Komposit PPHI dibuat dengan menggunakan metode Hand Lay Up pada temperatur 2500C dengan fraksi volume serat alami sebesar 10%, dimana serat dibuat digunting halus hingga memiliki ukuran mesh 120/170, 170/200 dan dibawah 200 mesh, Kekuatan tarik komposit diukur dengan mengacu pada standar ASTM 3039, kekuatan tekan diukur mengacu pada ASTM D 695. Harga Impak dari komposit diukur dengan mengacu pada ASTM D 6110-04. Pada penelitian ini dapat disimpulkan, fraksi volume 10 % serat alami yang baik ketika dicampur dengan matriks polipropilena high impact adalah serat nanas dengan meshing 170/200 dapat meningkatkan kekuatan tarik PPHI sebesar 40 % dan meningkatkan harga impak PPHI sebesar 50,8 % jika dilihat penelitan sebelumnya yakni menggunakan serat rami dibawah mesh 1200 dengan matriks PPHI. Kata Kunci: Rami, Daun Nanas, Polipropilena High Impact, Hand Lay Up. ABSTRACT Natural fibers that function as reinforcement have lighter properties, are easily formed, are corrosion resistant, are cheap and have the same strength as metal materials. Natural fiber which has good tensile, compressive and impact strength including Ramie and pineapple leaves. For high impact polypropylene matrix (PPHI) which is widely used in the automotive industry. In this study the effect of volume fraction of natural fibers on the mechanical properties of PPHI composites with natural fiber reinforced properties was studied. PPHI composites are made using the Hand Lay Up method at a temperature of 2500C with a volume fraction of natural fibers of 10%, where fibers are made finely shaved to have a mesh size of 120/170, 170/200 and below 200 mesh, the tensile strength of the composite is measured by reference to the standard ASTM 3039, compressive strength measured refers to ASTM D 695. The impact price of the composite is measured with reference to ASTM D 6110-04. In this study it can be concluded, a good volume fraction of 10% natural fiber when mixed with high impact polypropylene matrix is pineapple fiber with meshing 170/200 can increase the tensile strength of PPHI by 40% and increase the impact price of PPHI by 50.8% if seen by research previously that used hemp fiber under mesh 1200 with PPHI matrix. Keywords: Ramie Pineapple, High Impact Polypropylene, Hand Lay Up.


Author(s):  
B. Liu ◽  
R. Villavicencio ◽  
C. Guedes Soares

Experimental and numerical results of drop weight impact test are presented on the plastic behavior and fracture of rectangular plates stuck laterally by a mass with a hemispherical indenter. Six specimens were tested in order to study the influence of the impact velocity and the diameter of the indenter. The impact scenarios could represent abnormal actions on marine structures, such as ship collision and grounding or dropped objects on deck structures. The tests are conducted on a fully instrumented impact tester machine. The obtained force-displacement response is compared with numerical simulations, performed by the LS-DYNA finite element solver. The simulations aim at proposing techniques for defining the material and restraints on finite element models which analyze the crashworthiness of marine structures. The mesh size and the critical failure strain are predicted by numerical simulations of the tensile tests used to obtain the mechanical properties of the material. The experimental boundary conditions are modeled in order to represent the reacting forces developed during the impact. The results show that the critical impact energy until failure is strongly sensitive to the diameter of the striker. The shape of the failure modes is well predicted by the finite element models when a relatively fine mesh is used. Comments on the process of initiation and propagation of fracture are presented.


2018 ◽  
Vol 32 (3) ◽  
pp. 297-311 ◽  
Author(s):  
Yousef Ahmad Mubarak ◽  
Raghda Talal Abdulsamad

This work was intended to provide an understanding of the effect of microcrystalline cellulose (MCC) on the mechanical properties of low-density polyethylene (LDPE). The impact resistance and the tensile properties of low-density LDPE/MCC composites were investigated. The weight fraction of MCC was varied at (0, 0.5, 1, 2.5, 5, 10, 20, and 30 wt%). The obtained blends were then used to prepare the required tensile and impact testing samples by hot compression molding technique. It has been found that MCC has a strong influence on the mechanical properties of LDPE. At a low MCC weight fraction, there was a little improvement in the ultimate strength, fracture stress, and elongation at break, but at a high MCC weight fraction, the tensile properties were deteriorated and reduced significantly. The addition of 1 wt% MCC to LDPE enhanced the mentioned properties by 10, 25, and 6%, respectively. While at 30 wt% MCC, these properties were lowered by 36, 25, and 96%. The elastic modulus of LDPE composites was improved on all MCC weight fractions used in the study, at 20 wt% MCC, an increase in the elastic modulus by 12 folds was achieved. On the other hand and compared with the impact strength of pure LDPE, the addition of MCC particles enhanced the impact strength, the highest value obtained was for LDPE composites filled with 10 wt% MCC where the impact strength enhanced by two folds.


Author(s):  
Benoit Stalin ◽  
Dongyang Yang ◽  
Yong Xia ◽  
Qing Zhou

This article investigates the influence of finite element model features on Fiber Reinforced Polymer (FRP) crushing simulation results. The study focuses on two composite material tube models using single shell modeling approach. The chosen material model is MAT58 (*MAT_LAMINATED_COMPOSITE_FABRIC) from the commercial finite element analysis software LS-Dyna. The baseline models geometry and material parameters come from a model calibration conducted for lightweight vehicle investigation. Five parameters are investigated. The mesh size and the number of integration point (NIP) are generic and ERODS, TSIZE and SOFT are the non-physical parameters of MAT58. This analysis aims at discuss the influence of these parameters on the simulation results focusing on the initial force peak and the average crush load, regarding results realism and instabilities such as large elements deformation and abnormal peak values. Also, the impact of the number of CPUs involved in the simulation calculation is presented. Recommendations are given to set the mesh size and the NIP. TSIZE value should be selected regarding the simulation time step. On the other hand, ERODS has to be adjusted manually. Both are determinant for simulation robustness. Further studies are proposed to find out the reasons of large element deformation.


Author(s):  
M. Barletta ◽  
V. Tagliaferri ◽  
F. Trovalusci ◽  
F. Veniali ◽  
A. Gisario

In this paper, the mechanisms of material removal during the fluidized bed machining (FBM) of polymeric substrates are analyzed. Cylindrical components composed of polyvinyl chloride (PVC) were exposed to the impact of abrasives while rotating at high speed within a fluidization column. The interaction between the Al2O3 abrasive media and the PVC surfaces was studied to identify the effect of the main process parameters, such as the machining time, the abrasive mesh size, and the rotational speed. The change in the surface morphology as a function of the process parameters was evaluated using field emission gun—scanning electron microscopy (FEG-SEM) and contact gauge profilometry. An improvement in the finishing of the processed surfaces was achieved, and the related mechanisms were identified. The roles of the impact speed and the contact conditions between the abrading particles and the substrate were also investigated.


Author(s):  
Rudolf. P. M. Rademakers ◽  
Stefan Bindl ◽  
Reinhard Niehuis

One of the research areas at the Institute of Jet Propulsion focuses on the design and optimization of s-shaped engine inlet configurations. The distortion being evoked within such inlet ducts should be limited to ensure an optimal performance, stability, and durability of the engine’s compression system. Computational Fluid Dynamics (CFD) play a major role in the design process of bent engine inlet ducts. The flow within such ducts can be computed, distortion patterns can be visualized, and related distortion coefficients are easily calculated. The impact of a distortion on flow phenomena within the compressor system can, however, only be computed with major computational efforts and thus the quality of an s-duct design in development is usually assessed by analyzing the evoked distortion with suitable distortion coefficients without a true knowledge of the duct’s influence on the downstream propulsion system. The influence of inlet distortion on both the performance and stability of the Larzac 04 jet engine was parameterized during experimental investigations at the engine test bed of the Institute of Jet Propulsion. Both pressure and swirl distortion patterns as they typically occur in s-duct inlet configurations were reproduced with distortion generators. Pressure distortion patterns were generated using seven types of distortion screens. The intensity of the distortion varies with the mesh size of the screen whereas the extension of the distortion is defined by the dimensions of the screen in radial and circumferential direction. A typical counter rotating twin-swirl was generated with a deltawing installed upstream of the compressor system. First, the development of flow distortion was analyzed for several engine operating points (EOPs). A linear relation between the total pressure loss in the engine inlet and the EOPs was found. Secondly, the flow within the compressor system with an inlet distortion was analyzed and unsteady flow phenomena were detected for severe inlet distortions. Finally, the effect of both pressure and swirl distortion on the performance and stability of the test vehicle was parameterized. A loss in engine performance with increasing inlet distortion is observable. The limiting inlet distortion with respect to engine stability was found and moreover it was shown that pressure distortion has a stronger influence on the stability of the compressor system compared to a counter rotating twin-swirl distortion. The presented parameterization is essential for the s-duct design, which is under development for an experimental set-up with the Larzac 04 jet engine.


2020 ◽  
Vol 54 (4) ◽  
pp. 1135-1143
Author(s):  
C. Ptatscheck ◽  
S. Gehner ◽  
W. Traunspurger

Abstract Meiofaunal organisms are the predominant metazoans in benthic systems and important members of the benthic food web. They are defined by mesh size and specifically by their retention on a sieve with a 44-µm mesh size. In this study, we examined the accuracy of this standard collection method by counting the number of meiobenthic individuals, life stages and nematode species in a sample. A filter cascade consisting of five different mesh sizes (41 µm, 30 µm, 20 µm, 10 µm and 1 µm) was used to fractionate a natural freshwater meiobenthic collection, and the individuals in each fraction were then counted. In line with the current definition of meiofauna, all tardigrades, microcrustaceans, chironomids and oligochaetes were retained by the largest mesh size, whereas 9% of the rotifers were first retained on the 30-µm meshes. For nematodes, 23% were not retained on the 41-µm meshes and individuals were collected even from the 1-µm fraction. With declining mesh size, the yield of retained nematodes increased, the age structure shifted to juveniles, evenness declined, and the species composition changed. As all of these findings were significant, this study therefore shows that the current definition of meiofauna is not sufficient to encompass the entire spectrum of meiofauna present in a sample and may result in misleading assessments of the diversity and composition of these organisms. We therefore propose that, especially for nematodes, a definition based on a smaller mesh size (at least 20 µm) is more appropriate.


2008 ◽  
Vol 22 (09n11) ◽  
pp. 1538-1543
Author(s):  
JEONGHOON YOO ◽  
DONG-TEAK CHUNG ◽  
MYUNG SOO PARK

To predict the behavior of a dual plate composed of 5052-aluminum and 1002-cold rolled steel under ballistic impact, numerical and experimental approaches are attempted. For the accurate numerical simulation of the impact phenomena, the appropriate selection of the key parameter values based on numerical or experimental tests are critical. This study is focused on not only the optimization technique using the numerical simulation but also numerical and experimental procedures to obtain the required parameter values in the simulation. The Johnson-Cook model is used to simulate the mechanical behaviors, and the simplified experimental and the numerical approaches are performed to obtain the material properties of the model. The element erosion scheme for the robust simulation of the ballistic impact problem is applied by adjusting the element erosion criteria of each material based on numerical and experimental results. The adequate mesh size and the aspect ratio are chosen based on parametric studies. Plastic energy is suggested as a response representing the strength of the plate for the optimization under dynamic loading. Optimized thickness of the dual plate is obtained to resist the ballistic impact without penetration as well as to minimize the total weight.


2013 ◽  
Vol 561 ◽  
pp. 107-112
Author(s):  
Hui Guang Bian ◽  
Yu Jian Wu ◽  
Chuan Sheng Wang

This article by groups of comparison, analyzes the impact of he content, the mesh size and the kinds of Rubber Powder to Modified asphalt properties. Experiments concluded that, the content of rubber powder has the most impact to rubber powder modifying asphalt properties, and when the content in 10%~20% has a optimal value; the mesh size is not the thinner the better; ordinary rubber powder has a high performance-price ratio.


Sign in / Sign up

Export Citation Format

Share Document