scholarly journals Karakterisasi Mekanik Komposit Matriks Polipropilena High Impact Dengan Serat Alam Acak Dengan Metode Hand Lay Up Untuk Komponen Automotive

2020 ◽  
Vol 3 (3) ◽  
Author(s):  
Alfan Ekajati Latief ◽  
Nuha Desi Anggraeni ◽  
Dedy Hernady

ABSTRAK Serat alam yang berfungsi sebagai penguat memiliki sifat yang lebih ringan, mudah dibentuk, tahan korosi, harga murah dan memiliki kekuatan yang sama dengan material logam. Serat bahan alami yang memiliki kekuatan tarik, tekan dan impak yang baik diantaranya serat rami dan daun nanas. Untuk matriks Polipropilena high impact (PPHI) yang banyak digunakan dalam industri otomotif.. Pada penelitian ini dipelajari pengaruh fraksi volume serat alami terhadap sifat mekanik komposit PPHI berpenguat serat alami. Komposit PPHI dibuat dengan menggunakan metode Hand Lay Up pada temperatur 2500C dengan fraksi volume serat alami sebesar 10%, dimana serat dibuat digunting halus hingga memiliki ukuran mesh 120/170, 170/200 dan dibawah 200 mesh, Kekuatan tarik komposit diukur dengan mengacu pada standar ASTM 3039, kekuatan tekan diukur mengacu pada ASTM D 695. Harga Impak dari komposit diukur dengan mengacu pada ASTM D 6110-04. Pada penelitian ini dapat disimpulkan, fraksi volume 10 % serat alami yang baik ketika dicampur dengan matriks polipropilena high impact adalah serat nanas dengan meshing 170/200 dapat meningkatkan kekuatan tarik PPHI sebesar 40 % dan meningkatkan harga impak PPHI sebesar 50,8 % jika dilihat penelitan sebelumnya yakni menggunakan serat rami dibawah mesh 1200 dengan matriks PPHI. Kata Kunci: Rami, Daun Nanas, Polipropilena High Impact, Hand Lay Up. ABSTRACT Natural fibers that function as reinforcement have lighter properties, are easily formed, are corrosion resistant, are cheap and have the same strength as metal materials. Natural fiber which has good tensile, compressive and impact strength including Ramie and pineapple leaves. For high impact polypropylene matrix (PPHI) which is widely used in the automotive industry. In this study the effect of volume fraction of natural fibers on the mechanical properties of PPHI composites with natural fiber reinforced properties was studied. PPHI composites are made using the Hand Lay Up method at a temperature of 2500C with a volume fraction of natural fibers of 10%, where fibers are made finely shaved to have a mesh size of 120/170, 170/200 and below 200 mesh, the tensile strength of the composite is measured by reference to the standard ASTM 3039, compressive strength measured refers to ASTM D 695. The impact price of the composite is measured with reference to ASTM D 6110-04. In this study it can be concluded, a good volume fraction of 10% natural fiber when mixed with high impact polypropylene matrix is pineapple fiber with meshing 170/200 can increase the tensile strength of PPHI by 40% and increase the impact price of PPHI by 50.8% if seen by research previously that used hemp fiber under mesh 1200 with PPHI matrix. Keywords: Ramie Pineapple, High Impact Polypropylene, Hand Lay Up.

Author(s):  
Akhmad Wahyudi ◽  
Akhmad Syarief

The Indonesian state is rich in natural resources, the various benefits of natural resources are useful for human survival. Various kinds of plants in Indonesia are useful as technical material.One of the engineering materials is Composite. Composite is a material formed from a combination of two or more matrials that have stronger mechanical properties than the material forming. The composite consists of two parts: a matrix as a binder or a composite protector and a filler as a composite filler. Natural fiber is an alternative filler, and bemban fiber (Donax Canniformis) is one of the many natural fibers grown in the Hulu Sungai Selatan area of South Kalimantan. From the research result, the influence of volume fraction on composite fiber bemban has the most optimum strength that is on variation 60% fiber bemban 40% Polyester with no alkalization that has absorption energy 13.23 joule and the impact price of 0.067 joule / mm².


2020 ◽  
Vol 8 (6) ◽  
pp. 5393-5397

In the present era, Natural fibers are favored for the formation of composites due to their low density, high strength, biodegradability, easy production, low carbon foot, environment friendly nature in comparison of synthetic fibers. This Paper deals with NFRC made from natural fibers obtained from the plants of arid region of Western Rajasthan on which a few researchers are focusing. This paper discuss on the extraction process of fiber from the ber’s stems, manufacturing of composites by using epoxy resin & ber’s fibers then testing of its mechanical properties e.g. tensile strength, young modulus, yield strength , and percentage elongation. Six Sample were made having weight ratio - 0.1, 0.2, 0.3, 0.4, 0.45, & 0. 6. Dog bone samples were prepared according to the ASTM D638 (Type IV) standard. Tensile strength varies from 12.19 MPa to 25 MPa, while young modulus varies from 1.4GPa to 2.9GPa for different weight ratios. Yield strength varies from 10.77 MPa to 21.16 MPa. Percentage of Elongation varies from 1 to 3%. These results shows that ber’s stems can be used for fiber extraction to manufacture composites materials & for better mechanical properties minimum fiber volume fraction percentage is 13% and maximum fiber fraction is 31%.This data can be used further when optimum value of fiber volume fraction is required to form composites from ber’s fibers.


Author(s):  
Mohammed Khazal ◽  
Salman H. Abbas ◽  
Younis M. Younis ◽  
Thabit Jamel

This study aims to enhance the mechanical properties of polymer material using type of natural fiber. Bamboo fiber considered the strongest between the natural fibers group, it have low density, high mechanical strength in addition to its availability makes it economically viable and have potential for used as engineering material. The study is concerned with evaluate some of the mechanical properties (Tensile strength, Bending strength, Impact strength) for the resultant composite reinforced with 10, 20 and 30 vol.% of bamboo fibers, as compared with received material. With the natural reinforcement, the optimum mechanical properties in comparison with the as received epoxy were achieved. The results indicated that the tensile strength increased from 13.51 MPa to 33.50 MPa (that is a percentage increase of 150 %), also the bending strength increased from 24.25 MPa to 44.5 MPa (that is a percentage increase about 83 %), as well as, the increase of the impact strength from 41 kJ/m2 to 69 kJ/m2 (that is a percentage increase about 68 %).


2014 ◽  
Vol 592-594 ◽  
pp. 202-205
Author(s):  
V. Santhanam ◽  
M. Chandrasekaran ◽  
N. Venkateshwaran

Composite materials are widely used for their superior properties such as high strength to weight ratio, high tensile strength, low thermal expansion, low density etc. Due to environmental issues the eco-friendly composites are being explored. Natural fibers as reinforcement for polymer composites are widely studied. But natural fibers lack better mechanical properties when compared with synthetic fibers. Hence mixing the natural fiber with a synthetic fiber such as glass fiber will improve mechanical properties of the composites. In this study banana fiber is mixed with glass fiber, and the mixture is used as reinforcement in epoxy matrix. The composite specimens were prepared using hand layup technique, the fibers were randomly oriented. Further the fiber length was varied as 10, 15, 20 and 25mm and volume fraction as 10%, 15%, 20% and 25%. Experiments were conducted to find the effect of fiber length and volume fraction on tensile strength, flexural strength, water absorption properties of the composites. It is observed that a fiber length of 20mm and 20% fiber volume fraction gave better mechanical properties.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1103
Author(s):  
Sara Sarraj ◽  
Małgorzata Szymiczek ◽  
Tomasz Machoczek ◽  
Maciej Mrówka

Eco-friendly composites are proposed to substitute commonly available polymers. Currently, wood–plastic composites and natural fiber-reinforced composites are gaining growing recognition in the industry, being mostly on the thermoplastic matrix. However, little data are available about the possibility of producing biocomposites on a silicone matrix. This study focused on assessing selected organic fillers’ impact (ground coffee waste (GCW), walnut shell (WS), brewers’ spent grains (BSG), pistachio shell (PS), and chestnut (CH)) on the physicochemical and mechanical properties of silicone-based materials. Density, hardness, rebound resilience, and static tensile strength of the obtained composites were tested, as well as the effect of accelerated aging under artificial seawater conditions. The results revealed changes in the material’s properties (minimal density changes, hardness variation, overall decreasing resilience, and decreased tensile strength properties). The aging test revealed certain bioactivities of the obtained composites. The degree of material degradation was assessed on the basis of the strength characteristics and visual observation. The investigation carried out indicated the impact of the filler’s type, chemical composition, and grain size on the obtained materials’ properties and shed light on the possibility of acquiring ecological silicone-based materials.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Taslima Ahmed Tamanna ◽  
Shah Alimuzzaman Belal ◽  
Mohammad Abul Hasan Shibly ◽  
Ayub Nabi Khan

AbstractThis study deals with the determination of new natural fibers extracted from the Corypha taliera fruit (CTF) and its characteristics were reported for the potential alternative of harmful synthetic fiber. The physical, chemical, mechanical, thermal, and morphological characteristics were investigated for CTF fibers. X-ray diffraction and chemical composition characterization ensured a higher amount of cellulose (55.1 wt%) content and crystallinity (62.5%) in the CTF fiber. The FTIR analysis ensured the different functional groups of cellulose, hemicellulose, and lignin present in the fiber. The Scherrer’s equation was used to determine crystallite size 1.45 nm. The mean diameter, specific density, and linear density of the CTF fiber were found (average) 131 μm, 0.86 g/cc, and 43 Tex, respectively. The maximum tensile strength was obtained 53.55 MPa for GL 20 mm and Young’s modulus 572.21 MPa for GL 30 mm. The required energy at break was recorded during the tensile strength experiment from the tensile strength tester and the average values for GL 20 mm and GL 30 mm are 0.05381 J and 0.08968 J, respectively. The thermal analysis ensured the thermal sustainability of CTF fiber up to 230 °C. Entirely the aforementioned outcomes ensured that the new CTF fiber is the expected reinforcement to the fiber-reinforced composite materials.


2017 ◽  
Vol 88 (15) ◽  
pp. 1776-1787 ◽  
Author(s):  
Mohamed Habibi ◽  
Édu Ruiz ◽  
Gilbert Lebrun ◽  
Luc Laperrière

This paper presents an experimental study and modeling of the influence of surface density and fiber length on the permeability of novel nonwoven flax fiber manufactured by the paper making process. Firstly, the relation between surface density, fiber lengths and pore size distribution measured with a porometer capillary instrument is reported in this study. The results show that higher surface density gives a denser fibrous network with a low porosity rate and longer fiber decreases the total number of fibers and increases the pore size for a given surface density. A liquid permeability study was then carried out to identify the impact of surface density, short fiber length and fiber volume fraction on in-plane impregnation of the reinforcement. Permeability was found to be inversely proportional to the reinforcement of surface density. In contrast, an increase of the fiber length increases the in-plane permeability of the reinforcement. Finally, a mathematical modeling is proposed to predict the permeability behavior of these innovative natural fiber webs.


2011 ◽  
Vol 471-472 ◽  
pp. 291-296 ◽  
Author(s):  
Piyush P. Gohil ◽  
A.A. Shaikh

Composites are becoming essential part of today’s material because they offer advantages such as low weight, corrosion resistance, high fatigue strength; faster assembly etc. composites are generating curiosity and interest all over the worlds. The attempts can be found in literature for composite materials high strength fiber and also natural fiber like jute, flax and sisal natural fibers provides data but there is need of experimental data availability for unidirectional natural fiber composite with seldom natural fiber like cotton, palm leaf etc., it can provide a feasible range of alternative materials to suitable conventional material. It was decided to carry out the systematic experimental study for the effect of volume fraction of reinforcement on longitudinal strength as well as Modulus of Elasticity (MOE) using developed mould-punch set up and testing aids. The testing is carried out as per ASTM D3039/3039M-08. The comparative assessment of obtained experimental results with literature is also carried out, which forms an important constituent of present work. It is also observed through SEM images and theoretical investigations that interface/interphase plays and important role in natural fiber composite.


Natural fibers from plants are gaining importance and may substitute wood in the production of wood plastic composites (WPC). To ensure continuity of fiber supply and sustainability of WPC industries, fibers of various types could be mixed together to obtain Mix WPC. However, research need to be carried out to identify the contribution of different fiber type collectively to the mechanical properties of Mix natural fiber polymer composite (NFPC). In this study, preliminary work on the use of natural fibre (NF) such as kenaf, sugar palm and pineapple leaf fibers in the preparation of Mix NFPC were carried out. Four different fiber mix samples with different fiber ratio and size were formulated using polypropylene (PP) as the polymer matrix. Montmorrilonite (MMT) filler was added at constant amount for enhancement of composite mechanical properties. Samples were mixed and prepared using a twin screw extruder and mini injection moulding resepectively. Individual fibers and NFPC prepared were characterized using thermogravimetric analyzer (TGA). Tensile, flexural and impact strength of the composites were determined. Generally, it was found that addition of fiber mix at 50% fiber loading enhance the tensile and flexural strength of the various NFPC with minimal exceptions. The impact strength of the composites were comparable to that of blank PP implying that addition of fiber gives additional advantage besides being eco-friendly. It was also found that higher kenaf loading and different size of fiber mix contribute positively to the various strengths measured. In addition to that, composition of individual fibers also contribute to the mechanical properties of the NFPCs


2020 ◽  
pp. 152808372092584
Author(s):  
Muhammad Awais Naeem ◽  
Qasim Siddiqui ◽  
Muhammad Rafique Khan ◽  
Muhammad Mushtaq ◽  
Muhammad Wasim ◽  
...  

In recent times, there is a growing demand for low-cost raw materials, renewable resources, and eco-friendly end products. Natural fibers are considered as strong candidates to be used as a potential reinforcement for composite manufacturing. In the current study, natural fibers extracted from banana peel were coated with bacterial cellulose through a green biosynthesis approach as well as by a simple slurry dipping method. Thus, natural fibers from banana peel waste were used the first time, to produce bacterial cellulose-natural fiber composites. SEM analysis revealed good interaction between the hybrid fibers and the epoxy matrix. Thermal gravimetric analysis results revealed that the degradation temperature increases because of the addition of bacterial cellulose on fiber surface, which improves the thermal stability. The maximum thermal decomposition temperature (405°C) was noticed for nanocomposites reinforced by banana fibers with bacterial cellulose deposited on their surface. Whereas the lowest weight loss was also found for the same sample group. The highest tensile strength (57.95 MPa) was found for SBC-BP/epoxy, followed by DBC-BP/epoxy (54.73 MPa) and NBP/epoxy (45.32 MPa) composites, respectively. Composites reinforced by both types of hybrid banana fibers shown comparatively higher tensile performance as compared with the neat banana peel fiber-epoxy composites, which can be attributed to the high strength and stiffness associated with the bacterial cellulose. Overall, this study suggests a successful and green route for the fabrication of natural fiber-reinforced composites with improved properties such as tensile strength and thermal stability.


Sign in / Sign up

Export Citation Format

Share Document