scholarly journals PENGGUNAAN SIMULASI DESKTOP RADIANCE PADA KONFIGURASI BENTUK BUKAAN

2021 ◽  
Vol 5 (2) ◽  
pp. 171
Author(s):  
Nova Asriana ◽  
Dewi Rachmaniatus Syariyah

Abstract: The usage of daylight in a room or building during the day is a wide strategy for illuminating the room naturally without artificial lighting services so that it can reduce the energy consumption of building. In addition, the use of daylight aims to enhance the quality of spatial visualization, vision health, environmental comfort, and increase the performance of user productivity in the room. This research will discourse about the amount of light get into room to identify how much the daylight can be useful and captured by human sight’s perception through a radiance simulation camera which will be translated into realistic images. This simulation is experimental-based that include two phases, namely the configuration of alternative openings and draws light according to the perception of user’s vision, then the set of radiance simulation based on scripting to generate the realistic images. Based on this simulation, the amount of daylight is influenced by source, quantity, position, area of openings and the building orientation or building. The amount of light intensity also affects the visual comfort of users who have activities in the room. The result of this simulation is to identify the room that generates daylight area and non-daylight area to decrease the artificial lighting.Abstrak: Pemanfaatan pencahayaan alami (daylight) pada sebuah ruangan dan bangunan di siang hari merupakan salah satu strategi desain untuk menerangi ruangan secara alami tanpa bantuan cahaya buatan sehingga dapat mengurangi konsumsi energi pada bangunan. Selain itu juga, permanfaatan pencahayaan alami (daylight) bertujuan untuk meningkatkan kualitas visual dalam ruangan, kesehatan indera penglihatan, kenyamanan lingkungan dan meningkatkan produktivitas kinerja pengguna bangunan. Pada penelitian ini akan membahas mengenai besaran cahaya yang masuk ke dalam suatu ruangan untuk melihat seberapa besar pencahayaan alami yang masuk dan ditangkap dalam suatu persepsi indera penglihatan manusia melalui kamera simulasi radiance yang diwujudkan ke dalam foto realistik. Simulasi ini dilakukan dengan metode berbasis eksperimen mandiri (experimental-based) yang terdiri dua tahap, yaitu tahapan konfigurasi bentuk bukaan dan draw light berdasarkan persepsi indera penglihatan peneliti, kemudian dilanjutkan dengan simulasi radiance berbasis scripting untuk menghasilkan foto realistik. Berdasarkan hasil simulasi ini, besarnya cahaya alami yang masuk ke dalam ruangan dipengaruhi oleh beberapa faktor, yaitu sumber bukaan, jumlah bukaan, posisi bukaan, besaran bukaan, dan orientasi ruangan atau bangunan. Besarnya intensitas cahaya yang masuk juga akan mempengaruhi kenyamanan visual bagi pengguna yang beraktivitas dalam ruangan tersebut. Hasil dari penelitian ini untuk melihat konfigurasi mana yang menghasilkan sebagian area daylight dan area non-daylight yang cukup merata untuk menghindari bantuan cahaya buatan.

2020 ◽  
Vol 2 (4) ◽  
pp. 462-475
Author(s):  
Alessandro Cannavale

Chromogenic materials and devices include a wide range of technologies that are capable of changing their spectral properties according to specific external stimuli. Several studies have shown that chromogenics can be conveniently used in building façades in order to reduce energy consumption, with other significant effects. First of all, chromogenics influence the annual energy balance of a building, achieving significant reductions in consumption for HVAC and artificial lighting. In addition, these technologies potentially improve the indoor level of visual comfort, reducing the risks of glare and excessive lighting. This brief review points to a systematic discussion—although not exhaustive and mainly limited to recent results and investigations—of the main studies that deal with building-integrated chromogenics that have appeared, so far, in the scientific literature.


Author(s):  
Nadia A Shiltagh ◽  
Mahmood Z. Abdullah ◽  
Ahmed R. Zarzoor

An efficient networks’ energy consumption and Quality of Services (QoS) are considered the most important issues, to evaluate the route quality of the designed routing protocol in Wireless Sensor Networks (WSNs). This study is presented an evaluation performance technique to evaluate two routing protocols: Secure for Mobile Sink Node location using Dynamic Routing Protocol (SMSNDRP) and routing protocol that used K-means algorithm to form Data Gathered Path (KM-DGP), on small and large network with Group of Mobile Sinks (GMSs). The propose technique is based on QoS and sensor nodes’ energy consumption parameters to assess route quality and networks’ energy usage. The evaluation technique is conducted on two routing protocols in two phases: The first phase is used to evaluate the route quality and networks’ energy consumption on small WSN with one mobile Sink Node (SN) and GMSs. The second phase, is used to evaluate the route quality and networks’ energy consumption on large network (four WSNs) with GMSs. The two phases are implementated by creating five sceneries via using NS2.3 simulator software. The implementation results of the proposed performance evaluation technique have demonstrated that SMSNDRP gives better networks’ energy consumption on small single network in comparison with KM-DGP. Also, it gives high quality route in large network that used four mobile SN, in contrast to KM-DGP that used sixteen mobile SNs. While in large network, it found that KM-DGP with sixteen mobile SNs gives better networks’ energy consumption in comparison with SMSNDRP with four mobile SNs.


HortScience ◽  
2019 ◽  
Vol 54 (10) ◽  
pp. 1745-1750 ◽  
Author(s):  
Cinthia Nájera ◽  
Miguel Urrestarazu

At present, trends exist in the production of food for the benefit of human health. The negative effect of an excessive intake of nitrates accumulated in vegetables is well known, causing worldwide concern. Light plays an important role in the accumulation of this ion. The objective of this work was to evaluate the effect of light-emitting diode (LED) spectra used in artificial lighting for horticulture on the accumulation of nitrates in leafy and root vegetables compared with the effects with white LED lights. Two independent experiments were carried out in the culture chamber. In Expt. 1, six species of nitrate accumulators were used: arugula, spinach, lettuce, endive, radish, and beetroot. In Expt. 2, four lettuce cultivars were used. In both experiments, the treatments were two spectra—T1 = AP67 Valoya® and the control (T0) = white Roblan®—at two illumination intensities [high (H) and low (L)] with a 16/8-hour (day/night) photoperiod. The fresh biomass and the concentration of nitrates were measured at 35 days of treatment posttransplantation. An important and significant increase of 50% of the mean fresh weight was obtained in all the species when the light intensity increased. Except for spinach in the low-intensity treatment, all nitrate content values were less than the maximum limits of European regulation. The nitrate content generally decreased with increasing intensity, and this benefit was greater in the T1 treatment. T0 showed a reduction in the nitrate content compared with T1 in only one case, which was the H in beetroot. A large and significant reduction was observed in the nitrate content in T1. For L in Expt. 1, the nitrate decrease was 18%, whereas for H, it was 35%. In Expt. 2, the decrease in the nitrate content was 10% for L and 21% for H. A greater benefit was derived when using the photosynthetic spectrum in the growing chambers under low light intensity.


2019 ◽  
Vol 11 (3) ◽  
pp. 841 ◽  
Author(s):  
Danilo Loconsole ◽  
Giacomo Cocetta ◽  
Piero Santoro ◽  
Antonio Ferrante

Sustainability is the most critical point in micro-scale indoor crop systems. It can be improved through the optimization of all of the production factors, such as water, nutrients, and energy. The use of light-emitting diodes (LED) allows the fine regulation of the light intensity and light spectrum to be obtained, with a significant reduction in energy consumption. The objective of this study was the optimization of a LED-based protocol of light management for Romaine lettuce cultivation in a micro-growing environment specifically designed for home cultivation. Four different growing cycles were tested. In each one, the light spectrum was modified by increasing the percentage of red light and decreasing the blue light. This resulted in a change in the light intensity which ranged from 63.2 to 194.54 µmol m−2 s−1. Moreover, the photoperiod was shortened to reduce the energy consumption and, in the last cycle, the effect of the daily alternation of dark and light was tested. The fresh and dry biomass produced were measured and the energy consumed in each cycle was monitored. The quality of lettuce was evaluated by measuring several physiological indexes, including chlorophyll a fluorescence, chlorophyll, sugars, nitrate, lipid peroxidation, carotenoids, and phenolic index. The results obtained showed that the productivity and the quality of lettuce can be positively affected by modulating the light quality and intensity, as well as other cultural practices. At the same time, the estimation of the electrical energy consumption indicated that little changes in the lighting recipe can significantly affect the energetic, environmental, and economic impact of home productions.


2021 ◽  
Vol 21 (1) ◽  
pp. 23-30
Author(s):  
Aisyah Anindya Putri ◽  
◽  
Dyah Nurwidyaningrum ◽  
Tri Wulan Sari ◽  
◽  
...  

Less optimized natural lighting would result in apartment residents being dependent on artificial lighting, thus increasing energy consumption. Building opening orientation considerably influences the natural light intensity. This research aimed to analyze the natural lighting pattern on apartment units with east-oriented opening orientation and determine methods to support the existing condition to be optimized. This research applied the descriptive analysis research method assumed from calculation outcome of the software DIALux. Results indicated a proportion of units in The H-Residence Apartment do not meet the requirements specified by SNI 03 6197-2011, predominantly in the kitchen area. The average light intensity in a day in units with east-oriented opening reached its peak at 08.00 – 09.00 a.m. and decreased towards 16.00 p.m. following the sun path. The light intensity in numerous areas exceeded the requirements significantly. Other factors influencing the natural light distribution are layout and interior element. Several ways to optimize the natural light intensity utilization are adding suitable shading device, using dark-colored interior elements, and considering the sun path in designing building openings.


2003 ◽  
pp. 61-75
Author(s):  
V. Guelbras

The article is devoted to verification of the Chinese GDP data. The author compares the rates of GDP growth with the rates of growth of energy consumption, transport turnover of goods, and numbers of projected and constructed objects in 1980-2000. The former was significantly lower during that period. He also analyses the level of using productive capacities and the quality of production. About 25-30% of industrial productive capacities are not used because there is neither national nor international demand for their low quality goods. The main conclusion of the article is that the Chinese GDP real size is about 20-30% less than official releases.


Author(s):  
Aliva Bera ◽  
D.P. Satapathy

In this paper, the linear regression model using ANN and the linear regression model using MS Excel were developed to estimate the physico-chemical concentrations in groundwater using pH, EC, TDS, TH, HCO3 as input parameters and Ca, Mg and K as output parameters. A comparison was made which indicated that ANN model had the better ability to estimate the physic-chemical concentrations in groundwater. An analytical survey along with simulation based tests for finding the climatic change and its effect on agriculture and water bodies in Angul-Talcher area is done. The various seasonal parameters such as pH, BOD, COD, TDS,TSS along with heavy elements like Pb, Cd, Zn, Cu, Fe, Mn concentration in water resources has been analyzed. For past 30 years rainfall data has been analyzed and water quality index values has been studied to find normal and abnormal quality of water resources and matlab based simulation has been done for performance analysis. All results has been analyzed and it is found that the condition is stable. 


2019 ◽  
Vol 1 (1) ◽  
pp. 92
Author(s):  
Fazidah Hanim Husain

Lighting is one of the key elements in any space and building infrastructure. Good design for an area in the building requires sufficient light that contributes to the efficiency of the activities. The correct method allows natural light to transmit, reduce heat and glare in providing a conducive learning environment. Light plays a significant influence to the quality of space and contributes focus of the students in an architecture studio. Previous research has shown that the effect of light also controlled emotions, behavior, and mood of the students. The operations of artificial lighting that have been used most of the time in an architecture studio during day and night may create lavishness and inadequacy at the same time. Therefore, this paper focuses on the identifying the quality of light for the architecture studio in UiTM (Perak), to instill a creative learning environment. Several methodologies adopted in this study such as illuminance level measurement using lux meter (LM-8100), and a questionnaire survey in gauging the lighting comfort level from students’ perspective. The study revealed that the illuminance level in the architecture studio is insufficient and not in the acceptable range stated in the Malaysian: Standards 1525:2007 and  not evenly distributed.  The study also concluded that the current studio environment is not condusive and appears monotonous. 


2005 ◽  
Vol 156 (12) ◽  
pp. 481-486 ◽  
Author(s):  
Jurij Diaci ◽  
Lahorka Kozjek

The objective of our research was to examine the effect of canopy shading on beech sapling architecture in the oldgrowth silver fir-beech forests of Pecka and Rajhenavski Rog. In August 2003 we sampled one plot (352 m2) in a large gap in Pecka, which was a result of a strong windstorm in 1983, and eight small gaps (26–78 m2) with similar sapling heights (3.8–8 m). A ground view of each gap was drawn including the characteristics of gap border trees and the density of separate sapling layers was recorded. The height and diameter were measured for each sapling, as well as the following quality characteristics on selected dominant saplings: width of the crown,number of larger branches and knots (>1/3 DBH), intensity of stem bending, deviation from vertical growth, number of terminal shoots, and the type of damage. The results show a negative effect of high canopy shading (estimated relative light intensity was below 5%) on the architectural quality of saplings. A lower overall density of saplings, greater intensity of bending and deviation from vertical growth, a shorter stem length without branches, a larger number of saplings with two terminal shoots, and a larger number of damaged saplings were observed in small gaps.


Sign in / Sign up

Export Citation Format

Share Document