scholarly journals Einfluss von Wildhuftieren auf den Wald seit Langem zu hoch – was tun? (Essay)

2017 ◽  
Vol 168 (4) ◽  
pp. 195-199
Author(s):  
Peter Brang

Impact of wild ungulates on forests too high for too long – what to do? (Essay) The impact of wild ungulates on forest regeneration has increased in Swiss forests for about five decades, and is currently in many places clearly too high. In the long term, this is likely to cause losses in forest ecosystem services, in particular so since it must be feared that ungulate impacts will further increase. The problem is accentuated by climate change which creates the need for a higher share of tree species that tolerate a warmer and drier climate, but are sensitive to browsing. Solutions to secure forest services are urgently needed, especially in mountain forests where protective measures to prevent damage are largely impractical. To find such solutions, an intensified communication between the players is most important. Moreover, the following approaches seem promising: 1) coherence in the objectives, 2) improved foundations for decision-making, 3) measures to bring ungulate populations in line with the available habitat und 4) the study and documentation of success stories.

Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 215
Author(s):  
Liudmila Tripolskaja ◽  
Asta Kazlauskaite-Jadzevice ◽  
Virgilijus Baliuckas ◽  
Almantas Razukas

Ex-arable land-use change is a global issue with significant implications for climate change and impact for phytocenosis productivity and soil quality. In temperate humid grassland, we examined the impact of climate variability and changes of soil properties on 23 years of grass productivity after conversion of ex-arable soil to abandoned land (AL), unfertilized, and fertilized managed grassland (MGunfert and MGfert, respectively). This study aimed to investigate the changes between phytocenosis dry matter (DM) yield and rainfall amount in May–June and changes of organic carbon (Corg) stocks in soil. It was found that from 1995 to 2019, rainfall in May–June tended to decrease. The more resistant to rainfall variation were plants recovered in AL. The average DM yield of MGfert was 3.0 times higher compared to that in the AL. The DM yields of AL and MG were also influenced by the long-term change of soil properties. Our results showed that Corg sequestration in AL was faster (0.455 Mg ha−1 year−1) than that in MGfert (0.321 Mg ha−1 year−1). These studies will be important in Arenosol for selecting the method for transforming low-productivity arable land into MG.


2010 ◽  
Vol 278 (1712) ◽  
pp. 1661-1669 ◽  
Author(s):  
David Alonso ◽  
Menno J. Bouma ◽  
Mercedes Pascual

Climate change impacts on malaria are typically assessed with scenarios for the long-term future. Here we focus instead on the recent past (1970–2003) to address whether warmer temperatures have already increased the incidence of malaria in a highland region of East Africa. Our analyses rely on a new coupled mosquito–human model of malaria, which we use to compare projected disease levels with and without the observed temperature trend. Predicted malaria cases exhibit a highly nonlinear response to warming, with a significant increase from the 1970s to the 1990s, although typical epidemic sizes are below those observed. These findings suggest that climate change has already played an important role in the exacerbation of malaria in this region. As the observed changes in malaria are even larger than those predicted by our model, other factors previously suggested to explain all of the increase in malaria may be enhancing the impact of climate change.


2021 ◽  
Author(s):  
Moshe Gophen

AbstractPart of the Kinneret watershed, the Hula Valley, was modified from wetlands – shallow lake for agricultural cultivation. Enhancement of nutrient fluxes into Lake Kinneret was predicted. Therefore, a reclamation project was implemented and eco-tourism partly replaced agriculture. Since the mid-1980s, regional climate change has been documented. Statistical evaluation of long-term records of TP (Total Phosphorus) concentrations in headwaters and potential resources in the Hula Valley was carried out to identify efficient management design targets. Significant correlation between major headwater river discharge and TP concentration was indicated, whilst the impact of external fertilizer loads and 50,000 winter migratory cranes was probably negligible. Nevertheless, confirmed severe bdamage to agricultural crops carried out by cranes led to their maximal deportation and optimization of their feeding policy. Consequently, the continuation of the present management is recommended.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3287 ◽  
Author(s):  
Ryan M. Huang ◽  
Oron L. Bass Jr ◽  
Stuart L. Pimm

Migratory seabirds face threats from climate change and a variety of anthropogenic disturbances. Although most seabird research has focused on the ecology of individuals at the colony, technological advances now allow researchers to track seabird movements at sea and during migration. We combined telemetry data on Onychoprion fuscatus (sooty terns) with a long-term capture-mark-recapture dataset from the Dry Tortugas National Park to map the movements at sea for this species, calculate estimates of mortality, and investigate the impact of hurricanes on a migratory seabird. Included in the latter analysis is information on the locations of recovered bands from deceased individuals wrecked by tropical storms. We present the first known map of sooty tern migration in the Atlantic Ocean. Our results indicate that the birds had minor overlaps with areas affected by the major 2010 oil spill and a major shrimp fishery. Indices of hurricane strength and occurrence are positively correlated with annual mortality and indices of numbers of wrecked birds. As climate change may lead to an increase in severity and frequency of major hurricanes, this may pose a long-term problem for this colony.


2000 ◽  
Vol 151 (4) ◽  
pp. 99-106 ◽  
Author(s):  
Josef Senn

After excessive cutting in Swiss mountain forests and extirpation of most of the wildlife during the past centuries, efficient forestry and hunting laws allowed a wide regeneration of the forests and a rapid increase of ungulate populations in the present century. As a consequence, the impacts of ungulates on the vegetation became obvious. Regeneration of forest trees, however, is influenced not only by ungulates, but by a number of physical site factors and biotic impacts. As these impacts and their interactions vary extensively, regeneration is neither spatially nor temporally constant. Most of the presently used tree-regeneration methods, however, assume constant conditions, which renders a proper evaluation of tree regeneration in mountain forests and the role of ungulates impossible. Furthermore, the effect of this variation on forest development and forest functions is unknown with regard to the long term. While society requires a multipurpose mountain forest, structured at a small scale, wild ungulates use their habitat at a larger scale. This often leads to conflicts. Consequently,solutions including different scales are necessary. A lack of knowledge will, therefore, have to be met by research making data available to the practice as well as through coordinated investigations and experiments.


2015 ◽  
Vol 3 (7) ◽  
pp. 4353-4389
Author(s):  
S. Quiroga ◽  
C. Suárez

Abstract. This paper examines the effects of climate change and drought on agricultural outputs in Spanish rural areas. By now the effects of drought as a response to climate change or policy restrictions have been analyzed through response functions considering direct effects on crop productivity and incomes. These changes also affect incomes distribution in the region and therefore modify the social structure. Here we consider this complementary indirect effect on social distribution of incomes which is essential in the long term. We estimate crop production functions for a range of Mediterranean crops in Spain and we use a decomposition of inequalities measure to estimate the impact of climate change and drought on yield disparities. This social aspect is important for climate change policies since it can be determinant for the public acceptance of certain adaptation measures in a context of drought. We provide the empirical estimations for the marginal effects of the two considered impacts: farms' income average and social income distribution. In our estimates we consider crop productivity response to both bio-physical and socio-economic aspects to analyze long term implications on both competitiveness and social disparities. We find disparities in the adaptation priorities depending on the crop and the region analyzed.


Agronomy ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 397 ◽  
Author(s):  
Giovanni Sgubin ◽  
Didier Swingedouw ◽  
Iñaki García de Cortázar-Atauri ◽  
Nathalie Ollat ◽  
Cornelis van Leeuwen

A comprehensive analysis of all the possible impacts of future climate change is crucial for strategic plans of adaptation for viticulture. Assessments of future climate are generally based on the ensemble mean of state-of-the-art climate model projections, which prefigures a gradual warming over Europe for the 21st century. However, a few models project single or multiple O(10) year temperature drops over the North Atlantic due to a collapsing subpolar gyre (SPG) oceanic convection. The occurrence of these decadal-scale “cold waves” may have strong repercussions over the continent, yet their actual impact is ruled out in a multi-model ensemble mean analysis. Here, we investigate these potential implications for viticulture over Europe by coupling dynamical downscaled EUR-CORDEX temperature projections for the representative concentration pathways (RCP)4.5 scenario from seven different climate models—including CSIRO-Mk3-6-0 exhibiting a SPG convection collapse—with three different phenological models simulating the main developmental stages of the grapevine. The 21st century temperature increase projected by all the models leads to an anticipation of all the developmental stages of the grapevine, shifting the optimal region for a given grapevine variety northward, and making climatic conditions suitable for high-quality wine production in some European regions that are currently not. However, in the CSIRO-Mk3-6-0 model, this long-term warming trend is suddenly interrupted by decadal-scale cold waves, abruptly pushing the suitability pattern back to conditions that are very similar to the present. These findings are crucial for winemakers in the evaluation of proper strategies to face climate change, and, overall, provide additional information for long-term plans of adaptation, which, so far, are mainly oriented towards the possibility of continuous warming conditions.


Author(s):  
Rod J. Snowdon ◽  
Benjamin Wittkop ◽  
Tsu-Wei Chen ◽  
Andreas Stahl

AbstractMajor global crops in high-yielding, temperate cropping regions are facing increasing threats from the impact of climate change, particularly from drought and heat at critical developmental timepoints during the crop lifecycle. Research to address this concern is frequently focused on attempts to identify exotic genetic diversity showing pronounced stress tolerance or avoidance, to elucidate and introgress the responsible genetic factors or to discover underlying genes as a basis for targeted genetic modification. Although such approaches are occasionally successful in imparting a positive effect on performance in specific stress environments, for example through modulation of root depth, major-gene modifications of plant architecture or function tend to be highly context-dependent. In contrast, long-term genetic gain through conventional breeding has incrementally increased yields of modern crops through accumulation of beneficial, small-effect variants which also confer yield stability via stress adaptation. Here we reflect on retrospective breeding progress in major crops and the impact of long-term, conventional breeding on climate adaptation and yield stability under abiotic stress constraints. Looking forward, we outline how new approaches might complement conventional breeding to maintain and accelerate breeding progress, despite the challenges of climate change, as a prerequisite to sustainable future crop productivity.


2019 ◽  
Vol 14 (3) ◽  
pp. 238-246 ◽  
Author(s):  
Joji B Kuramatsu ◽  
Hagen B Huttner

Background The most recent years have significantly expanded knowledge regarding risks and benefits of resuming oral anticoagulation (OAC) after intracerebral hemorrhage (ICH). No randomized data is yet available, though several large observational studies and meta-analyses have investigated the impact of resuming OAC on thromboembolic versus hemorrhagic complications in these high-risk patients after ICH. Aims The present review will summarize the most important studies conducted over the last years and will focus on relevant factors help guiding on decision-making on whether to start OAC after ICH. Summary of review Several important factors (demographic, co-morbidities, clinical characteristics) need to be considered before individual decision-making for or against OAC is employed. Existing observational data suggest that patients after ICH with indication for long-term oral anticoagulation benefit from OAC given significant reductions of thromboembolic events without significantly increasing bleeding complications. Studies even suggest that thereby also clinical outcomes may be improved. Prospective trials currently recruiting patients will clarify whether OAC after ICH – or left atrial appendage closure as a meaningful alternative – is of clinical net-benefit. Conclusions Large sized and well-executed investigations (moderate quality of evidence) are showing that OAC resumption after ICH decreases thromboembolic complications and long-term mortality without significantly increasing bleeding complications. Further, data suggest that resumption may be safer in non-lobar ICH compared to lobar ICH, but overall, thoughtful selection, strict blood pressure control, and precise communication are paramount before starting a patient on OAC after ICH.


2019 ◽  
Vol 10 (04) ◽  
pp. 1950013
Author(s):  
CRISTINA CATTANEO ◽  
EMANUELE MASSETTI

This paper analyzes whether migration is an adaptation strategy that households employ to cope with climate in Nigeria. We estimate our model using the cross-sectional variation in climate and long-term migration decisions because we are interested in the average response to long-term climatic conditions. For households that operate farms, we find that the relationship between climate and migration is nonlinear. In particular, climates closer to ideal farming conditions are associated with a higher propensity to migrate, whereas in the least favorable climatic conditions, the propensity to migrate declines. The marginal effect of rainfall and temperature changes on migration varies by season. We estimate the impact of climate change on the number of migrant households in 2031–2060 and 2071–2100, ceteris paribus. With current population levels, climate change generates between 3.6 and 6.3 million additional migrants, most of them being internal. However, these estimates are not statistically significant.


Sign in / Sign up

Export Citation Format

Share Document