scholarly journals Landslide-generated tsunami and particle transport in mountain lakes and reservoirs

2016 ◽  
Vol 57 (71) ◽  
pp. 232-244 ◽  
Author(s):  
Jeevan Kafle ◽  
Puskar R. Pokhrel ◽  
Khim B. Khattri ◽  
Parameshwari Kattel ◽  
Bhadra Man Tuladhar ◽  
...  

AbstractGravitational mass flows may generate tsunamis as they hit water bodies such as oceans, reservoirs or mountain lakes. Upon impact, they can generate tremendous particle-laden or debris flows and floods. Rapidly cascading waves down mountain slopes can trigger debris flows or floods, potentially causing huge damage to civil structures and endangering life. Here we apply a general two-phase mass flow model (Pudasaini, 2012), and present three-dimensional (3-D), high-resolution simulations for a real two-phase debris impacting a fluid reservoir. An innovative formulation provides an opportunity, within a single framework, to simulate simultaneously the sliding two-phase debris/landslide, reservoir, debris impact at reservoir, water-wave generation, propagation and mixing, and separation between solid and fluid phases. The results demonstrate formation and propagation of very special solid and fluid structures in the reservoir, propagation of submarine debris, turbidity currents, and complex interactions between the subaerial debris, surface tsunami and submarine debris waves. Our results reveal that the submerge timescaling for a deformable two-phase debris deviates substantially from the same for a non-deformable solid. These results substantially increase our understanding of 3-D complex multiphase systems/flows. This allows for the proper modeling of landslide/debris-induced mountain tsunami, dynamics of turbidity currents and highly concentrated sediment transports in Himalayan and Alpine slopes and channels, with associated applications to engineering, environmental and hazard-mitigation plans.

Author(s):  
Tamas Szili-Torok ◽  
Jens Rump ◽  
Torsten Luther ◽  
Sing-Chien Yap

Abstract Better understanding of the lead curvature, movement and their spatial distribution may be beneficial in developing lead testing methods, guiding implantations and improving life expectancy of implanted leads. Objective The aim of this two-phase study was to develop and test a novel biplane cine-fluoroscopy-based method to evaluate input parameters for bending stress in leads based on their in vivo 3D motion using precisely determined spatial distributions of lead curvatures. Potential tensile, compressive or torque forces were not subjects of this study. Methods A method to measure lead curvature and curvature evolution was initially tested in a phantom study. In the second phase using this model 51 patients with implanted ICD leads were included. A biplane cine-fluoroscopy recording of the intracardiac region of the lead was performed. The lead centerline and its motion were reconstructed in 3D and used to define lead curvature and curvature changes. The maximum absolute curvature Cmax during a cardiac cycle, the maximum curvature amplitude Camp and the maximum curvature Cmax@amp at the location of Camp were calculated. These parameters can be used to characterize fatigue stress in a lead under cyclical bending. Results The medians of Camp and Cmax@amp were 0.18 cm−1 and 0.42 cm−1, respectively. The median location of Cmax was in the atrium whereas the median location of Camp occurred close to where the transit through the tricuspid valve can be assumed. Increased curvatures were found for higher slack grades. Conclusion Our results suggest that reconstruction of 3D ICD lead motion is feasible using biplane cine-fluoroscopy. Lead curvatures can be computed with high accuracy and the results can be implemented to improve lead design and testing.


2021 ◽  
Vol 11 (15) ◽  
pp. 6972
Author(s):  
Lihua Cui ◽  
Fei Ma ◽  
Tengfei Cai

The cavitation phenomenon of the self-resonating waterjet for the modulation of erosion characteristics is investigated in this paper. A three-dimensional computational fluid dynamics (CFD) model was developed to analyze the unsteady characteristics of the self-resonating jet. The numerical model employs the mixture two-phase model, coupling the realizable turbulence model and Schnerr–Sauer cavitation model. Collected data from experimental tests were used to validate the model. Results of numerical simulations and experimental data frequency bands obtained by the Fast Fourier transform (FFT) method were in very good agreement. For better understanding the physical phenomena, the velocity, the pressure distributions, and the cavitation characteristics were investigated. The obtained results show that the sudden change of the flow velocity at the outlet of the nozzle leads to the forms of the low-pressure zone. When the pressure at the low-pressure zone is lower than the vapor pressure, the cavitation occurs. The flow field structure of the waterjet can be directly perceived through simulation, which can provide theoretical support for realizing the modulation of the erosion characteristics, optimizing nozzle structure.


1967 ◽  
Vol 89 (4) ◽  
pp. 577-586 ◽  
Author(s):  
P. Cooper

A model is developed for analytically determining pump inducer performance in both the single-phase and cavitating flow regimes. An equation of state for vaporizing flow is used in an approximate, three-dimensional analysis of the flow field. The method accounts for losses and yields internal distributions of fluid pressure, velocity, and density together with the resulting overall efficiency and pressure rise. The results of calculated performance of two sample inducers are presented. Comparison with recent theory for fluid thermal effects on suction head requirements is made with the aid of a resulting dimensionless vaporization parameter.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Yoon Jo Kim ◽  
Yogendra K. Joshi ◽  
Andrei G. Fedorov ◽  
Young-Joon Lee ◽  
Sung-Kyu Lim

It is now widely recognized that the three-dimensional (3D) system integration is a key enabling technology to achieve the performance needs of future microprocessor integrated circuits (ICs). To provide modular thermal management in 3D-stacked ICs, the interlayer microfluidic cooling scheme is adopted and analyzed in this study focusing on a single cooling layer performance. The effects of cooling mode (single-phase versus phase-change) and stack/layer geometry on thermal management performance are quantitatively analyzed, and implications on the through-silicon-via scaling and electrical interconnect congestion are discussed. Also, the thermal and hydraulic performance of several two-phase refrigerants is discussed in comparison with single-phase cooling. The results show that the large internal pressure and the pumping pressure drop are significant limiting factors, along with significant mass flow rate maldistribution due to the presence of hot-spots. Nevertheless, two-phase cooling using R123 and R245ca refrigerants yields superior performance to single-phase cooling for the hot-spot fluxes approaching ∼300 W/cm2. In general, a hybrid cooling scheme with a dedicated approach to the hot-spot thermal management should greatly improve the two-phase cooling system performance and reliability by enabling a cooling-load-matched thermal design and by suppressing the mass flow rate maldistribution within the cooling layer.


Author(s):  
Stephan Uhkoetter ◽  
Stefan aus der Wiesche ◽  
Michael Kursch ◽  
Christian Beck

The traditional method for hydrodynamic journal bearing analysis usually applies the lubrication theory based on the Reynolds equation and suitable empirical modifications to cover turbulence, heat transfer, and cavitation. In cases of complex bearing geometries for steam and heavy-duty gas turbines this approach has its obvious restrictions in regard to detail flow recirculation, mixing, mass balance, and filling level phenomena. These limitations could be circumvented by applying a computational fluid dynamics (CFD) approach resting closer to the fundamental physical laws. The present contribution reports about the state of the art of such a fully three-dimensional multiphase-flow CFD approach including cavitation and air entrainment for high-speed turbo-machinery journal bearings. It has been developed and validated using experimental data. Due to the high ambient shear rates in bearings, the multiphase-flow model for journal bearings requires substantial modifications in comparison to common two-phase flow simulations. Based on experimental data, it is found, that particular cavitation phenomena are essential for the understanding of steam and heavy-duty type gas turbine journal bearings.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Zhengzhi Wang ◽  
Chunling Zhu

In view of the rotor icing problems, the influence of centrifugal force on rotor blade icing is investigated. A numerical simulation method of three-dimensional rotor blade icing is presented. Body-fitted grids around the rotor blade are generated using overlapping grid technology and rotor flow field characteristics are obtained by solving N-S equations. According to Eulerian two-phase flow, the droplet trajectories are calculated and droplet impingement characteristics are obtained. The mass and energy conservation equations of ice accretion model are established and a new calculation method of runback water mass based on shear stress and centrifugal force is proposed to simulate water flow and ice shape. The calculation results are compared with available experimental results in order to verify the correctness of the numerical simulation method. The influence of centrifugal force on rotor icing is calculated. The results show that the flow direction and distribution of liquid water on rotor surfaces change under the action of centrifugal force, which lead to the increasing of icing at the stagnation point and the decreasing of icing on both frozen limitations.


2016 ◽  
Vol 19 (1) ◽  
pp. 101-114 ◽  
Author(s):  
Eman Gadalla ◽  
Ibrahim Abosag ◽  
Kathy Keeling

Purpose – This study aims to examine the nature and the potential use of avatar-based focus groups (AFGs) (i.e. focus groups conducted in three-dimensional [3D] virtual worlds [VWs]) as compared to face-to-face and online focus groups (OFGs), motivated by the ability of VWs to stimulate the realism of physical places. Over the past decade, there has been a rapid increase in using 3D VWs as a research tool. Design/methodology/approach – Using a two-phase reflective approach, data were collected first by using traditional face-to-face focus groups, followed by AFGs. In Phase 2, an online, semi-structured survey provided comparison data and experiences in AFGs, two-dimensional OFGs and traditional face-to-face focus groups. Findings – The findings identify the advantages and disadvantages of AFGs for marketing research. There is no evident difference in data quality between the results of AFGs and face-to-face focus groups. AFG compensates for some of the serious limitations associated with OFGs. Practical implications – The paper reflects on three issues, data quality, conduct of AFGs (including the moderator reflection) and participant experience, that together inform one’s understanding of the characteristics, advantages and limitations of AFG. Originality/value – This is the first paper to compare between AFGs, traditional face-to-face focus groups and OFGs. AFG holds many advantages over OFGs and even, sometimes, over face-to-face focus groups, providing a suitable environment for researchers to collect data.


Lubricants ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 44
Author(s):  
Christian Ziese ◽  
Cornelius Irmscher ◽  
Steffen Nitzschke ◽  
Christian Daniel ◽  
Elmar Woschke

The vibration behaviour of turbocharger rotors is influenced by the acting loads as well as by the type and arrangement of the hydrodynamic bearings and their operating condition. Due to the highly non-linear bearing behaviour, lubricant film-induced excitations can occur, which lead to sub-synchronous rotor vibrations. A significant impact on the oscillation behaviour is attributed to the pressure distribution in the hydrodynamic bearings, which is influenced by the thermo-hydrodynamic conditions and the occurrence of outgassing processes. This contribution investigates the vibration behaviour of a floating ring supported turbocharger rotor. For detailed modelling of the bearings, the Reynolds equation with mass-conserving cavitation, the three-dimensional energy equation and the heat conduction equation are solved. To examine the impact of outgassing processes and thrust bearing on the occurrence of sub-synchronous rotor vibrations separately, a variation of the bearing model is made. This includes run-up simulations considering or neglecting thrust bearings and two-phase flow in the lubrication gap. It is shown that, for a reliable prediction of sub-synchronous vibrations, both the modelling of outgassing processes in hydrodynamic bearings and the consideration of thrust bearing are necessary.


Sign in / Sign up

Export Citation Format

Share Document