scholarly journals DISSOLUTION KINETIC OF MELOXICAM FROM HYDROPHILIC MATRIX-TYPE FILMS FOR TRANSDERMAL THERAPY

FARMACIA ◽  
2021 ◽  
Vol 69 (1) ◽  
pp. 100-106
Author(s):  
PAULA ANTONOAEA

Taking into consideration the fact the transdermal administration of the active pharmaceutical ingredients can represent a therapeutic approach that increases the patient’s compliance, this study aims to evaluate the release of meloxicam (MX), a potent non-steroidal anti-inflammatory drug, incorporated in hydrophilic polymer-based matrices for transdermal therapeutic systems was studied. Three different formulations were realized by solvent casting method containing two types of hydroxypropyl methylcellulose (HPMCE5 with low viscosity and HPMC15000 with high viscosity) whose concentration was also varied. The drug release test was performed by Franz diffusion cell and the dissolution curves were analysed from a kinetical point of view by model dependent and model independent methods. Linearization by simple regression allowed the flux calculations of values that varied between 0.183 and 32.270 g/(cm2h). Based on the results obtained with the mathematical analysis, we can conclude that the MX release is influenced by the pH of the dissolution media and by the type and concentration of the matrix forming agent. Discrimination of model dependent mathematical models was done by the Akaike index with values between 49 and -62. The kinetic analysis of the MX releasing curves from the proposed formulations showed that Korsmeyer-Peppas was more suitable for the release characterisation of the active pharmaceutical ingredient from the transdermal therapeutic systems analysed.

2021 ◽  
Vol 18 ◽  
Author(s):  
Chulhun Park ◽  
Jong Hoon Lee ◽  
Gang Jin ◽  
Hai Van Ngo ◽  
Jun-Bom Park ◽  
...  

Background: Hydrophilic hydroxypropyl methylcellulose (HPMC) matrix tablets are the standard role model of the oral controlled-release formulation. Nevertheless, the HPMC kinetics for the mechanistic understanding of drug release and hydrodynamic behaviors are rarely investigated. This study aims to investigate the release behaviors of both HPMC and paracetamol (model drug) from the hydrophilic matrix tablet. Methods: Two different viscosity grades of HPMC were used (Low viscosity: 6 cps, High viscosity: 4,000 cps). Three different ratios of drug/HPMC (H:38.08%, M:22.85%, and L:15.23% (w/w) of HPMC amounts in total weight) matrix tablets were prepared by wet granulation technique. The release profiles of the drug and HPMC in a matrix tablet were quantitatively analyzed by HPLC and 1H-nuclear magnetic resonance (NMR) spectroscopy. The hydrodynamic changes of HPMC were determined by the gravimetric behaviors such as swelling and erosion rates, gel layer thickness, front movement data,and distributive near-infrared (NIR) chemical imaging of HPMC in a matrix tablet during the dissolution process. Results: High viscosity HPMC tablets showed slower release of HPMC than the release rate of drug, suggesting that drug release preceded polymer release.Different hydration phenomenon was qualitatively identified and corresponded to the release profiles. The release behaviors of HPMC and drug in the tablet could be distinguished with the significant difference with fitted dissolution kinetics model (Low viscosity HPMC 6cps; Korsmeyer-Peppas model, High viscosity HPMC 4000cps; Hopfenberg model, Paracetamol; Weibull model) according to the weight of ingredients and types of HPMC. Conclusion: The determination of HPMC polymer release correlating with drug release, hydrodynamic behavior, and NIR chemical imaging of HPMC can provide new insights into the drug release-modulating mechanism in the hydrophilic matrix system.


2011 ◽  
Vol 61 (3) ◽  
pp. 303-312 ◽  
Author(s):  
Canan Hasçiçek ◽  
Günseli Yüksel-Tilkan ◽  
Berna Türkmen ◽  
Nurten Özdemir

Effect of formulation parameters on the drug release and floating properties of gastric floating two-layer tablets with acetylsalicylic acid Floating dosage forms of acetylsalicylic acid, used for its antithrombotic effect, were developed to prolong gastric residence time and increase bioavailability. In the two-layer tablet formulation, hydroxypropyl methylcellulose (HPMC) of high viscosity and an effervescent mixture of citric acid and sodium bicarbonate formed the floating layer. The release layer contained the drug, direct tableting agent and different types of matrix-forming polymers such as HPMC of low viscosity, sodium carboxymethylcellulose and chitosan. Tablets were prepared using a direct compression technique. The effect of formulation variables on physicochemical and floating properties and the drug release from tablets were investigated. Floating ability was dependent on the amount of effervescent agent and gel-forming polymer of the floating layer. Drug release was prolonged to 8 hours by changing the type and viscosity of the matrix-forming polymer in the drug-loading layer and all formulations showed a diffusion release mechanisms.


2021 ◽  
Vol 9 (2) ◽  
pp. 66-76
Author(s):  
Shefali Singh ◽  
Harvinder Popli

Active pharmaceutical ingredient is a chemical compound which is most important raw material to formulate a finished pharmaceutical medicine and has a pharmacological effect.  India has a long history of being heavily dependent for these raw materials on China due to one major reason i.e. Low manufacturing cost. But overdependence of APIs imports from China brought various liabilities to India including supply chain disruption and price hikes during pandemic, leading to shortage of various important APIs/KSMs. This COVID 19 widespread has solidly put the center of our country on being “Atma Nirbhar”. And this activity had brought out the strengths, market patterns and opportunities in five divisions counting Healthcare, which are basic from country’s point of view. In view of changing geo-political situation and recalibrated trade arrangement, it is crucial that India become self-reliant within the generation of APIs and KSMs, which is why decreasing the Import reliance for Active pharmaceutical ingredients (APIs) & Key starting materials (KSMs) particularly from china has been focused upon with the assistance of productive linked incentive scheme (PLIS) passed by Department of pharmaceuticals, Government of India to thrive Indian API industry. Hence, this review highlights the current state of Indian API industry, evaluates challenges, opportunities give suggestions for moving forward for self-sufficiency of APIs as well as centers on current regulatory prerequisites for Active pharmaceutical Ingredients.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 338
Author(s):  
Ali Alrahlah ◽  
Abdel-Basit Al-Odayni ◽  
Haifa Fahad Al-Mutairi ◽  
Bashaer Mousa Almousa ◽  
Faisal S. Alsubaie ◽  
...  

This study aimed to synthesize new bisphenol A-glycidyl methacrylate (BisGMA) derivatives, targeting a reduction in its viscosity by substituting one of its OH groups, the leading cause of its high viscosity, with a chlorine atom. Hence, this monochloro-BisGMA (mCl-BisGMA) monomer was synthesized by Appel reaction procedure, and its structure was confirmed using Fourier transform infrared spectroscopy, 1H and 13C-nuclear magnetic resonance spectroscopy, and mass spectroscopy. The viscosity of mCl-BisGMA (8.3 Pa·s) was measured under rheometry conditions, and it was found to be more than 65-fold lower than that of BisGMA (566.1 Pa·s) at 25 °C. For the assessment of the viscosity changes of model resins in the presence of mCl-BisGMA, a series of resin matrices, in which, besides BisGMA, 50 wt % was triethylene glycol dimethacrylate, were prepared and evaluated at 20, 25, and 35 °C. Thus, BisGMA was incrementally replaced by 25% mCl-BisGMA to obtain TBC0, TBC25, TBC50, TBC75, and TBC100 blends. The viscosity decreased with temperature, and the mCl-BisGMA content in the resin mixture increased. The substantial reduction in the viscosity value of mCl-BisGMA compared with that of BisGMA may imply its potential use as a dental resin matrix, either alone or in combination with traditional monomers. However, the various properties of mCl-BisGMA-containing matrices should be evaluated.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 619
Author(s):  
Krisztián Pamlényi ◽  
Katalin Kristó ◽  
Orsolya Jójárt-Laczkovich ◽  
Géza Regdon

Currently, pharmaceutical companies are working on innovative methods, processes and products. Oral mucoadhesive systems, such as tablets, gels, and polymer films, are among these possible products. Oral mucoadhesive systems possess many advantages, including the possibility to be applied in swallowing problems. The present study focused on formulating buccal mucoadhesive polymer films and investigating the physical and physical–chemical properties of films. Sodium alginate (SA) and hydroxypropyl methylcellulose (HPMC) were used as film-forming agents, glycerol (GLY) was added as a plasticizer, and cetirizine dihydrochloride (CTZ) was used as an active pharmaceutical ingredient (API). The polymer films were prepared at room temperature with the solvent casting method by mixed two-level and three-level factorial designs. The thickness, tensile strength (hardness), mucoadhesivity, surface free energy (SFE), FTIR, and Raman spectra, as well as the dissolution of the prepared films, were investigated. The investigations showed that GLY can reduce the mucoadhesivity of films, and CTZ can increase the tensile strength of films. The distribution of CTZ proved to be homogeneous in the films. The API could dissolve completely from all the films. We can conclude that polymer films with 1% and 3% GLY concentrations are appropriate to be formulated for application on the buccal mucosa as a drug delivery system.


Aerospace ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 5
Author(s):  
Sicong Yu ◽  
Xufeng Zhang ◽  
Xiaoling Liu ◽  
Chris Rudd ◽  
Xiaosu Yi

In this concept-proof study, a preform-based RTM (Resin Transfer Molding) process is presented that is characterized by first pre-loading the solid curing agent onto the preform, and then injecting the liquid nonreactive resin with an intrinsically low viscosity into the mold to infiltrate and wet the pre-loaded preform. The separation of resin and hardener helped to process inherently high viscosity resins in a convenient way. Rosin-sourced, anhydrite-cured epoxies that would normally be regarded as unsuited to liquid composite molding, were thus processed. Rheological tests revealed that by separating the anhydrite curing agent from a formulated RTM resin system, the remaining epoxy liquid had its flowtime extended. C-scan and glass transition temperature tests showed that the preform pre-loaded with anhydrite was fully infiltrated and wetted by the liquid epoxy, and the two components were diffused and dissolved with each other, and finally, well reacted and cured. Composite laminates made via this approach exhibited roughly comparable quality and mechanical properties with prepreg controls via autoclave or compression molding, respectively. These findings were verified for both carbon and ramie fiber composites.


2014 ◽  
Vol 783-786 ◽  
pp. 2537-2540 ◽  
Author(s):  
Satoshi Sunada ◽  
Norio Nunomura ◽  
Sayaka Hirata ◽  
Naoki Nagase

Since Fe-Cu-C sintered steels are easily rusted, they are coated with rust preventive oils. High viscosity of those rust preventive oils decrease workability, and low viscosity deteriorates rust preventive performance. Therefore, it is necessary to develop new rust preventive oils with contradictory properties of low viscosity and superior rust prevention. However, precise methodology to evaluate rust prevention ability has not been established. In this study, we developed new technique to quantitatively evaluate rust prevention ability by measuring the open circuit potential through thin corrosive solution on Fe-Cu-C sintered steels coated with a rust preventive oils. As a result, the ability for rust prevention can be measured quantitatively, and it decreases slowly over time, with repeating destruction and restoration. Furthermore, it was found that the deteriorating processes of rust prevention ability for rust prevention oils are composed of three characteristics steps respectively. That is, in the first step the great open circuit potential changes from 0V to-0.3V with repetition were observed where the excellent rust prevention ability was kept, in the second step it decreases slowly from-0.1V to-0.4V with oscillation of the small potential changes where the gradual decrease of rust prevention ability was recognized and in the third step it decreases monotonously in the lower potential than-0.4V where the rust was observed because of the remarkable deteriorating of the rust prevention ability.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Dionysios Anninos ◽  
Beatrix Mühlmann

Abstract We explore the conjectured duality between a class of large N matrix integrals, known as multicritical matrix integrals (MMI), and the series (2m − 1, 2) of non-unitary minimal models on a fluctuating background. We match the critical exponents of the leading order planar expansion of MMI, to those of the continuum theory on an S2 topology. From the MMI perspective this is done both through a multi-vertex diagrammatic expansion, thereby revealing novel combinatorial expressions, as well as through a systematic saddle point evaluation of the matrix integral as a function of its parameters. From the continuum point of view the corresponding critical exponents are obtained upon computing the partition function in the presence of a given conformal primary. Further to this, we elaborate on a Hilbert space of the continuum theory, and the putative finiteness thereof, on both an S2 and a T2 topology using BRST cohomology considerations. Matrix integrals support this finiteness.


2021 ◽  
Vol 1028 ◽  
pp. 346-351
Author(s):  
Soni Setiadji ◽  
Zulfi Mofa Agasa ◽  
Diba G Auliya ◽  
Fitrilawati ◽  
Norman Syakir ◽  
...  

Duration of use and injectability are external factors for Polydimethylsiloxane (PDMS) that needs to be considered when PDMS utilized as a vitreous substituted liquid in vitreoretinal surgery. In general, PDMS which has been used as a substitute for vitreous humour is PDMS with a low viscosity in the value about 1000 cSt and a high viscosity at a value of about 5000 cSt. Various deficiencies have been encountered from low and high viscosity of PDMS, causing research to be continued to obtain PDMS which has suitable properties as a substitute for vitreous humour. One of them is research to obtain medium viscosity of PDMS with a viscosity value of about 2000 cSt. Here, we reported synthesis and characterization of PDMS with medium viscosity in ranges from 1800 to 2600 mPas. PDMS was synthesized through Ring-Opening Polymerization (ROP) pathway using the monomer of Octamethylcyclotetrasiloxane (D4) and the chain terminator of Hexamethyldisiloxane (MM). Various concentrations of potassium hydroxide (KOH) of 3, 4, 6 and 8 %(w/v) were applied as initiator to form gel of PDMS. All synthesized PDMS samples were identified to have viscosity values of 1800-2600 mPas, refractive index values of 1.4042-1.4044 and surface tension values of 22-23 mN/m. Meanwhile, the results of Fourier-Transform Infrared (FTIR) measurement showed that the absorption peaks were similar to that of our previous report.


2021 ◽  
pp. 37-54
Author(s):  
Roman Petrovich Terekhov ◽  
Denis Igorevich Pankov ◽  
Ekaterina Aleksandrovna Anfinogenova ◽  
Irina Anatolievna Selivanova

Рolymorphism is receiving increasing attention due to its influence on the physicochemical and pharmacological properties of the active pharmaceutical ingredients (API) while maintaining the molecular structure. This review is devoted to the problem of APIs phase state control both at the development stage and during the circulation of the drug. The term «polymorphism» has different definitions depending on the branch of science. There is no unambiguous solution to this issue in the regulatory documentation of pharmaceutical industry either. Based on the analysis of literary sources, the article presents a comparison of pharmacopeia methods, recommended in Russian and foreign regulatory documents for the analysis of polymorphism of medicinal substances, including state pharmacopeias of Russia, Belarus, Kazakhstan, the USA, and Japan, as well as international pharmacopeias of the European Economic Union and the Eurasian Economic Union. The trend on using a complex of high-tech equipment is revealed. A systematic approach to analysis based on X-ray diffraction, thermal, spectral, microscopic, biological, and physical methods for determining constants makes it possible not only to identify the polymorphic modification of API, but also to characterize its structure, morphology, physicochemical properties and pharmacological activity. In the Russian Federation, the phenomenon of polymorphism is being studied especially intensively, and some control methods, such as biological methods, are validated only in Russian pharmacopeia. A promising direction for further research is the improvement and harmonization of regulatory documentation within the framework of this chemical and technological field of pharmacy. A global approach will help to reduce not only the probability of poor-quality products entering the market, but also the costs of establishing the authenticity of the active pharmaceutical ingredient produced.


Sign in / Sign up

Export Citation Format

Share Document