scholarly journals Rose hip (Rosa canina L): A functional food perspective

2014 ◽  
Vol 4 (12) ◽  
pp. 493 ◽  
Author(s):  
Cui Fan ◽  
Callen Pacier ◽  
Danik M. Martirosyan

Background: Rose hip (Rosa canina L.) is the pseudo-fruit of the rose plant, which is widely known as a valuable source of polyphenols and vitamin C. Both in vivo and in vitro studies have demonstrated that this fruit exhibits anti-inflammatory, antioxidant, and antiobesogenic activities. The health benefits of Rose hip (RH) have been attributed to its wide range of bioactive compounds including the anti-inflammatory galactolipid: (2S)-1,2-di-O-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]-3-O- β-D-galactopyranosyl glycerol (GOPO), vitamin C, phenolics, lycopene, lutein, zeaxanthin, and other carotenoids. As cyclooxygenase inhibitors, RH compounds may reduce the risk of cancer, heart disease, and various inflammatory conditions. The aim of this review is to present an overview of the functional, medical, and physiological properties of RH.Keywords: Rosa canina, Rose hip, antioxidant, anti-inflammatory, GOPO, lycopene, and vitamin C

2021 ◽  
Vol 12 ◽  
Author(s):  
Jia Hui Wong ◽  
Anna M. Barron ◽  
Jafri Malin Abdullah

Natural products remain a crucial source of drug discovery for accessible and affordable solutions for healthy aging. Centella asiatica (L.) Urb. (CA) is an important medicinal plant with a wide range of ethnomedicinal uses. Past in vivo and in vitro studies have shown that the plant extract and its key components, such as asiatic acid, asiaticoside, madecassic acid and madecassoside, exhibit a range of anti-inflammatory, neuroprotective, and cognitive benefits mechanistically linked to mitoprotective and antioxidant properties of the plant. Mitochondrial dysfunction and oxidative stress are key drivers of aging and neurodegenerative disease, including Alzheimer’s disease and Parkinson’s disease. Here we appraise the growing body of evidence that the mitoprotective and antioxidative effects of CA may potentially be harnessed for the treatment of brain aging and neurodegenerative disease.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Reza Shirazinia ◽  
Ali Akbar Golabchifar ◽  
Vafa Baradaran Rahimi ◽  
Abbas Jamshidian ◽  
Alireza Samzadeh-Kermani ◽  
...  

Lead is one of the most common environmental contaminants in the Earth’s crust, which induces a wide range of humans biochemical changes. Previous studies showed that Opuntia dillenii (OD) fruit possesses several antioxidant and anti-inflammatory properties. The present study evaluates OD fruit hydroalcoholic extract (OHAE) hepatoprotective effects against lead acetate- (Pb-) induced toxicity in both animal and cellular models. Male rats were grouped as follows: control, Pb (25 mg/kg/d i.p.), and groups 3 and 4 received OHAE at 100 and 200 mg/kg/d + Pb (25 mg/kg/d i.p.), for ten days of the experiment. Thereafter, we evaluated the levels of alkaline phosphatase (ALP), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), catalase (CAT) activity and malondialdehyde (MDA) in serum, and liver histopathology. Additionally, the cell study was also done using the HepG2 cell line for measuring the direct effects of the extract on cell viability, oxidative stress MDA, and glutathione (GSH) and inflammation tumor necrosis factor-α (TNF-α) following the Pb-induced cytotoxicity. Pb significantly increased the serum levels of ALT, AST, ALP, and MDA and liver histopathological scores but notably decreased CAT activity compared to the control group ( p < 0.001 for all cases). OHAE (100 and 200 mg/kg) significantly reduced the levels of serum liver enzyme activities and MDA as well as histopathological scores while it significantly increased CAT activity compared to the Pb group ( p < 0.001 –0.05 for all cases). OHAE (20, 40, and 80 μg/ml) concentration dependently and significantly reduced the levels of MDA and TNF-α, while it increased the levels of GSH and cell viability in comparison to the Pb group ( p < 0.001 –0.05 for all cases). These data suggest that OHAE may have hepatoprotective effects against Pb-induced liver toxicity both in vitro and in vivo by its antioxidant and anti-inflammatory activities.


Author(s):  
Muhammad Furqan Akhtar ◽  
Syed Ahmad Raza ◽  
Ammara Saleem ◽  
Irfan Hamid ◽  
Mirza Muhammad Faran Ashraf Baig ◽  
...  

Background: Peganum harmala is traditionally used to manage rheumatoid arthritis (RA) and other inflammatory conditions. However, its use against RA has not been scientifically evaluated. The current study was designed to assess the anti-arthritic and anti-inflammatory activities of the methanolic extract of P. harmala leaves by in vitro and in vivo methods. Methods: The in vitro assays were carried out to determine the effect of plant extract on inhibition of egg albumin denaturation and human red blood cell membrane (HRBC) stabilization. Moreover, 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity was performed to determine the antioxidant potential. In vivo anti-arthritic activity was performed by determining the curative effect against Complete Freund’s adjuvant (0.1 ml). The plant extract was administered to rats orally at 200, 400 and 600 mg/kg/day for 21 days. Results: The values of IC50 of plant extract in protein denaturation, stabilization of HRBC and DPPH assays were 77.54 mg/ml, 23.90 mg/ml and 58.09 µg/ml respectively. Moreover, the plant extract significantly attenuated the poly-arthritis and weight loss, anemia and paw edema. The plant extract restored the level of C-reactive protein, rheumatoid factor, alanine transaminase, aspartate transaminase and alkaline phosphatase in poly-arthritic rats. Moreover, the plant extract restored the immune organs weight in treated rats. Treatment with P. harmala also significantly subdued the oxidative stress by reinstating superoxide dismutase, reduced glutathione, catalase and malondialdehyde in poly-arthritic rats. The plant extract notably restored the prostaglandin-E2 and tumor necrosis factor (TNF)-α in the serum of poly-arthritic rats. Conclusion: It was concluded that P. harmala extract had potential antioxidant, anti-inflammatory and antiarthritic activities which primarily might be attributed to alkaloids, flavonoids and phenols.


2010 ◽  
Vol 69 (3) ◽  
pp. 273-278 ◽  
Author(s):  
Mauro Serafini ◽  
Ilaria Peluso ◽  
Anna Raguzzini

Epidemiological evidence suggests that a high intake of plant foods is associated with lower risk of chronic diseases. However, the mechanism of action and the components involved in this effect have not been identified clearly. In recent years, the scientific community has agreed to focus its attention on a class of secondary metabolites extensively present in a wide range of plant foods: the flavonoids, suggested as having different biological roles. The anti-inflammatory actions of flavonoids in vitro or in cellular models involve the inhibition of the synthesis and activities of different pro-inflammatory mediators such as eicosanoids, cytokines, adhesion molecules and C-reactive protein. Molecular activities of flavonoids include inhibition of transcription factors such as NF-κB and activating protein-1 (AP-1), as well as activation of nuclear factor-erythroid 2-related factor 2 (Nrf2). However, the in vitro evidence might be somehow of limited impact due to the non-physiological concentrations utilized and to the fact that in vivo flavonoids are extensively metabolized to molecules with different chemical structures and activities compared with the ones originally present in the food. Human studies investigating the effect of flavonoids on markers of inflammation are insufficient, and are mainly focused on flavonoid-rich foods but not on pure molecules. Most of the studies lack assessment of flavonoid absorption or fail to associate an effect on inflammation with a change in circulating levels of flavonoids. Human trials with appropriate placebo and pure flavonoid molecules are needed to clarify if flavonoids represent ancillary ingredients or key molecules involved in the anti-inflammatory properties of plant foods.


2019 ◽  
Vol 25 (8) ◽  
pp. 871-935 ◽  
Author(s):  
Zahra Ayati ◽  
Mahin Ramezani ◽  
Mohammad Sadegh Amiri ◽  
Ali Tafazoli Moghadam ◽  
Hoda Rahimi ◽  
...  

Ethnopharmacological relevance: The genus Curcuma, which is the most important source of curcumin, has been widely used in different traditional medicines. Various species of Curcuma have long been used for several purposes such as healing wounds, liver disorders, jaundice and also as a blood purifier. Aim of the study: This review focused on the ethnopharmacological uses and phytochemical aspects of Curcuma. Additionally, in this study, the different properties of two species of Curcuma in Islamic Traditional Medicine (ITM), C. longa and C. zedoaria, as well as their pharmacological aspects in modern medicine are reviewed. Materials and methods: ITM literatures were searched to find Curcuma’s applications. Also, electronic databases including PubMed and Scopus were searched to obtain studies giving any in vitro, in vivo or human evidence of the efficacy of C. longa and C. zedoaria in the treatment of different diseases. ChemOffice software was used to find chemical structures. Results: The analysis showed that ethno-medical uses of Curcuma have been recorded for centuries. Approximately, 427 chemical compounds have been isolated and identified from Curcuma spp. This genus is rich in flavonoids, tannins, anthocyanin, phenolic compounds, oil, organic acids and inorganic compounds. Curcumin is one of the main active ingredients in Curcuma which has strong anti-inflammatory and antioxidant effects. Besides, pharmacological studies have indicated wide range of Curcuma’s activities, such as hepato-protective, antifungal, antihypertensive and neuroprotective. Conclusions: In this study, we reviewed various studies conducted on ethno-medicinal, ITM properties and photochemistry of Curcuma spp. Also, pharmacological activities of two species, C. longa and C. zedoaria are summarized. Pre-clinical investigations have demonstrated some of the traditional aspects of Curcuma, such as wound healing, anti-arthritic, anti-tumor and liver protective activities. These could be related to antioxidant and anti-inflammatory properties of Curcuma which might be due to high amounts of phenolic compounds. Curcuma is mentioned to have neural tonic properties in ITM which have been confirmed by some animal studies. Considering various preclinical studies on C. longa and C. zedoaria and their active ingredient, curcumin, randomized controlled trials are warranted to confirm their promise as a clinically effective hepato and neuro-protective agents.


Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 28
Author(s):  
Nahla Ayoub ◽  
Nadia Badr ◽  
Saeed S. Al-Ghamdi ◽  
Safaa Alsanosi ◽  
Abdullah R. Alzahrani ◽  
...  

Salvadora persica L. (S. persica, Siwak) is an ethnic plant that is widely used for improving oral hygiene. This study aimed to provide a phytochemical profiling of S. persica ethyl acetate fraction (SPEAF) and to evaluate the healing activity of a muco-adhesive formula of the fraction against acetic acid-induced oral ulcers in rats. HPLC-ESI-QTOF-MS-MS analysis of SPEAF resulted in the tentative identification of 56 metabolites containing fatty acids (23%), urea derivatives (10.5%) and sulphur compounds (10%), in addition to several amides, polyphenols and organic acids (6.5%, 5% and 2%, respectively). For the first time, 19 compounds were identified from S. persica. In vitro and in vivo experiments indicated that the extract is non-toxic. SPEAF exhibited superior healing activities compared to both the negative and positive control groups on days 7 and 14 of tongue ulcer induction. This was confirmed by histopathological examinations of haematoxylin and eosin-stained (H&E) and Masson’s trichrome-stained tongue sections. Moreover, SPEAF showed potent anti-inflammatory activities, as evidenced by the inhibited expression of interleukin-6 (IL-6) and tumour necrosis alpha (TNF-α). Moreover, SPEAF exhibited potent antioxidant activity, as it prevented malondialdehyde (MDA) accumulation, reduced glutathione (GSH) depletion and superoxide dismutase (SOD) exhaustion. SPEAF significantly enhanced hydroxyproline tongue content and upregulated collagen type I alpha 1 (Col1A1) mRNA expression. SPEAF also improved angiogenesis, as shown by the increased mRNA expression of the angiopoietin-1 (Ang-1). In conclusion, S. persica has a wide range of secondary metabolites and ameliorates acetic acid-induced tongue ulcers in rats. This can be attributed, at least partly, to its anti-inflammatory, antioxidant, procollagen and angiogenic activities. These findings provide support and validity for the use of S. persica as a traditional and conventional treatment for oral disorders.


Planta Medica ◽  
2011 ◽  
Vol 77 (12) ◽  
Author(s):  
L Saaby ◽  
AK Jäger ◽  
A Heegaard ◽  
SB Christensen

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Denis Okello ◽  
Jun Lee ◽  
Youngmin Kang

Inflammatory diseases are major health concerns affecting millions of people worldwide. Aspilia africana has been used for centuries by many African communities in the treatment of a wide range of health conditions, including inflammatory diseases, osteoporosis, rheumatic pains, and wounds. Analysis of the phytochemical composition of A. africana indicated that the plant is rich in a broad range of secondary metabolites, including flavonoids, alkaloids, tannins, saponins, terpenoids, sterols, phenolic compounds, and glycosides. This explains the efficacy of the plant in treating inflammation-related diseases, as well as several other health conditions affecting different African communities. The mechanisms of action of the anti-inflammatory phytochemical compounds in A. africana include inhibition of a number of physiological processes involved in the inflammatory process and synthesis or action of proinflammatory enzymes. The phytochemicals enhance anti-inflammatory biological responses such as inhibition of a number of chemical mediators including histamine, prostanoids and kinins, 5-lipoxygenase. and cyclooxygenase and activation of phosphodiesterase and transcriptase. Currently used anti-inflammatory medications are associated with several disadvantages such as drug toxicity and iatrogenic reactions, thereby complicating the treatment process. The adverse effects related to the use of these conventional synthetic drugs have been the driving force behind consideration of natural remedies, and efforts are being made toward the development of anti-inflammatory agents based on natural extracts. A. africana is rich in secondary metabolites, and its use as a traditional medicine for treating inflammatory diseases has been validated through in vitro and in vivo studies. Therefore, the plant could be further explored for potential development of novel anti-inflammatory therapeutics.


Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4411 ◽  
Author(s):  
Olympia Kouzi ◽  
Eleni Pontiki ◽  
Dimitra Hadjipavlou-Litina

Indandiones are a relatively new group of compounds presenting a wide range of biological activities. The synthesis of these compounds was performed via a Knoevenagel reaction between an aldehyde and 1,3-indandione and were obtained with a yield up to 54%. IR, 1H-Nucleic Magnetic Resonance (NMR), 13C-NMR, LC/MS ESI+ and elemental analysis were used for the confirmation of the structures of the novel derivatives. Lipophilicity values of compounds were calculated theoretically and experimentally by reversed chromatography method as values RM. The novel derivatives were studied through in vitro and in vivo experiments for their activity as anti-inflammatory and antioxidant agents and as inhibitors of lipoxygenase, trypsin, and thrombin. The inhibition of the carrageenin-induced paw edema (CPE) was also determined for representative structures. In the above series of experiments, we find that all the compounds showed moderate to satisfying interaction with the stable DPPH free radical in relation to the concentration and the time 2-arylidene-1-indandione (10) was the strongest. We observed moderate or very low antioxidant activities for selected compounds in the decolorization assay with ABTS+•. Most of the compounds showed high anti-lipid peroxidation of linoleic acid induced by AAPH.2-arylidene-1-indandione (7) showed a strongly inhibited soybean LOX. Only 2-arylidene-1-indandione (3) showed moderate scavenging activity of superoxide anion, whereas 2-arylidene-1-indandione (8) and 2-arylidene-1-indandione (9) showed very strong inhibition on proteolysis. 2-arylidene-1-indandione (8) highly inhibited serine protease thrombin. 2-arylidene-1-indandiones (7, 8 and 9) can be used as lead multifunctional molecules. The compounds were active for the inhibition of the CPE (30–57%) with 2-arylidene-1-indandione (1) being the most potent (57%). According to the predicted results a great number of the derivatives can cross the Blood–Brain Barrier (BBB), act in CNS and easily transported, diffused, and absorbed. Efforts are conducted a) to correlate quantitatively the in vitro/in vivo results with the most important physicochemical properties of the structural components of the molecules and b) to clarify the correlation of actions among them to propose a possible mechanism of action. Hydration energy as EHYDR and highest occupied molecular orbital (HOMO) better describe their antioxidant profile whereas the lipophilicity as RM values governs the in vivo anti-inflammatory activity. Docking studies are performed and showed that soybean LOX oxidation was prevented by blocking into the hydrophobic domain the substrates to the active site.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Anca D. Farcaș ◽  
Augustin C. Moț ◽  
Alina E. Pârvu ◽  
Vlad Al. Toma ◽  
Mirel A. Popa ◽  
...  

Known for centuries throughout the world, Plantago species have long been used as traditional herbal remedies for many diseases related to inflammatory conditions of the skin, respiratory and digestive tract, or even malignancy. This study is aimed first at investigating the in vitro antioxidant and regenerative effects of Plantago sempervirens Crantz hydroalcoholic extract followed by an in vivo experiment using a turpentine oil-induced inflammation model. The in vitro evaluation for antioxidant activity was performed using classical assays such as DPPH and TEAC scavenging assays but also EPR, and the total phenolic content was determined using the Folin-Ciocalteu reagent. The wound healing assay was performed on human cells (Human EA.hy926). Besides, the prooxidant activity was determined using a method which involves in situ free radical generation by laccase and the oxidation of haemoglobin. On turpentine oil-induced inflammation in rats, the in vivo effects of three doses of P. sempervirens extracts (100%, 50%, and 25%) were assessed by measuring oxidative stress (MDA, TOS, OSI, NO, CAT, and SOD) and inflammatory (CRP, WBC, and NEU) parameters. Having a rich polyphenolic content, the xerophyte P. sempervirens exhibited a strong in vitro antioxidant activity by scavenging radicals, enhancing cell regeneration, and reducing oxidative stress markers. Diluted P. sempervirens extract (25%) exhibited the best antioxidant, wound healing, and anti-inflammatory activity.


Sign in / Sign up

Export Citation Format

Share Document